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Abstract. Traffic flow prediction is critical for intelligent transporta-
tion systems. Recent studies indicate that performance improvement by
designing new models is becoming marginal. Instead, we argue that the
improvement can be achieved by using traffic-related facts or laws, which
is termed exogenous knowledge. To this end, we propose a knowledge-
driven memory system that can be seamlessly integrated into GCN-based
traffic forecasting models. Specifically, the memory system includes three
components: access interface, memory module, and feedback interface.
The access interface based on the attention mechanism and the feedback
interface based on the gate mechanism are used to guide the model to
extract useful patterns and integrate these patterns into the model to en-
hance spatiotemporal representation respectively. The memory module
is used to learn specific knowledge-based patterns, and this is achieved
by constraining the learning process with unsupervised loss functions for-
mulated inspired by exogenous knowledge. We construct three kinds of
memory modules driven by different exogenous knowledge: the long-term
trend memory to learn periodic patterns, the hierarchical effect memory
to capture coarse-grained region patterns, and the representative pattern
memory to extract representative patterns. Experiments combined with
multiple existing models demonstrate the effectiveness of the memory
system.

Keywords: Traffic forecasting · Spatiotemporal data mining · Graph
convolutional network.

1 Introduction

Traffic forecasting plays a fundamental role in intelligent transportation systems
(ITS) which is beneficial for practical traffic applications. For instance, road
traffic speed and occupancy forecasting can provide insights for urban planning,
dynamic management of urban traffic, the efficiency of the logistics industry,
and route planning public.
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To achieve accurate traffic forecasting, most researchers are devoted to de-
veloping complex spatiotemporal learning models. Machine learning methods in
this field mainly use time series analysis models, e.g, Auto-Regressive Integrated
Moving Average (ARIMA) and Support Vector Regression (SVR), which fail to
model complex spatiotemporal correlation among nodes of the traffic network
and time points along the temporal dimension. In recent years, with the rise
of deep learning, researchers [1–3] introduce various cutting-edge deep-learning
models to learn spatiotemporal correlation, and then generated spatiotemporal
representation is used as input to decoders (e.g fully connected layers) to pre-
dict traffic. For example, [1, 4] utilize convolutional neural networks (CNN) to
learn spatial dependencies and combine CNN with time series models (e.g long
short-term memory (LSTM) or temporal convolutional network(TCN)) to cap-
ture temporal dependencies. Recently, impressed by the promising performance
of graph convolutional neural networks (GCN), researchers [5–8] move to inte-
grate GNN into traffic forecasting for capturing dependencies among nodes. For
example, STGCN [9] constructs a graph topology based on the road network
and then uses GCN for graph representation learning. STSGCN [10] which is
a well-designed synchronous model expands GCN into the spatiotemporal di-
mension to synchronously capture local spatiotemporal correlation with a local
spatiotemporal graph.

However, recent studies indicate that the gain of the forecasting performance
induced by modifying neural network structures has become marginal [11], and
hence it is in great need to seek alternative approaches to further boost the
performance of the traffic forecasting models. To this end, we note an overlooked
aspect in the field of traffic: exogenous knowledge, which refers to the facts or
laws related to traffic and is the external abstraction of the internal features of
traffic data. Therefore, a natural idea is to introduce exogenous knowledge to help
analyze the evolution laws of traffic networks, which can provide inspiration to
learn more comprehensive spatiotemporal correlation. For example, based on the
fact that traffic data is periodic, some models [1, 4] integrate different methods
to explicitly capture periodic dependencies, which is proven to be effective for
modeling more robust temporal dependencies.

In this paper, instead of designing advanced spatiotemporal learning mod-
els, we move to investigate another aspect: how to effectively leverage traffic
exogenous knowledge to improve the prediction performance of the model, and
finally propose a general module, knowledge-driven memory system, which uses
the memory as the backbone due to its flexible capability of storing, abstracting
and organizing the knowledge into a structural and addressable form. Accord-
ing to the exogenous knowledge, unsupervised loss functions are formulated to
constrain the memory system to learn specific patterns, which are termed as
knowledge-based patterns. The model can extract these patterns to enhance
spatiotemporal representation.

The memory system includes three carefully-designed components: access in-
terface, memory module, and feedback interface. The access interface provides a
specific access address based on the query information from the model to guide
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Fig. 1: The details of the memory system. Subfigure (a) illustrates that the traf-
fic is periodic. Subfigure (b) shows the macro level of the transportation system
(three hotspots). Subfigure (c) shows the cosine similarity distribution of spa-
tiotemporal patterns, most of which have extremely high similarity.

the model to extract useful patterns, and the memory module is parameterized
and end-to-end updated with models to learn knowledge-based patterns accord-
ing to exogenous knowledge. The feedback interface refers to how to integrate
the information from the memory system into the models. Specifically,

Access interface. The access interface is based on the attention mechanism.
The advantage is that the model can adaptively extract useful patterns by match-
ing the query vector of the model with the memory module.

Memory module. Three types of traffic exogenous knowledge (as shown in
Fig.1) are introduced to enrich the memory system ecology. That is, three kinds
of memory modules are configured in the memory system to store the corre-
sponding patterns.

– Long-term trend memory. Based on the fact that traffic data is periodic
(as shown in Fig.1 (a)), long-term trend memory is used to explicitly store
periodic patterns of the traffic network, which can be used to model stronger
temporal dependence.
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– Hierarchical effect memory. Urban traffic network is a hierarchical struc-
ture (as shown in Fig.1 (b)), including not only micro-structure where fine-
grained roads or nodes are regarded as entities, but also macro-structure with
coarse-grained regions gathered by micro-entities as entities. In a coarse-
grained region, the associations among nodes may be more intimate. To this
end, we propose the hierarchical effect memory to model this effect and learn
coarse-grained patterns of the traffic network. Considering the availability
of external data (e.g POI), we introduce a graph pooling loss function to
constrain the model to adaptively learn a friendly hierarchical structure of
the traffic network.

– Representative pattern memory. A recent study [12] reveals that traffic
patterns of road networks are redundant, and the traffic status of the entire
road network can be effectively represented by generalizing a set of repre-
sentative patterns. Based on this discovery, we propose the representative
pattern memory to extract representative patterns of the traffic network.

Feedback interface. To efficiently integrate extracted information from the
memory module into the model, we provide a feedback interface based on the
gating mechanism to filter out redundant information and achieve efficient in-
formation fusion.

In conclusion, we propose a novel memory system driven by exogenous knowl-
edge for traffic forecasting. Our contributions are summarized as follows:

– We investigate leveraging exogenous knowledge to improve the prediction
performance of the model and propose a knowledge-driven memory system
that can broadly boost the representational power of GCN-based traffic fore-
casting models.

– We carefully customize three components of the memory system. The access
interface based on the attention mechanism and the feedback interface are
used to extract knowledge-based patterns from memory modules and inte-
grate these patterns into the models to enhance the spatiotemporal represen-
tation. And three kinds of memory modules driven by exogenous knowledge
are introduced to learn and store periodic patterns, coarse-grained patterns,
and representative patterns respectively.

– The memory system is deployed to diverse traffic forecasting models to eval-
uate the validity, and experiments on two real-world datasets demonstrate
that traffic forecasting models can widely benefit from the memory system.

2 Preliminaries

In this section, we first define some terms that will be used in the problem
statement and then formulate the traffic forecasting problem.

Def.1 (Traffic Network) We use a graph G = (V, E ,A) to denote a traffic
network, where V is the node (e.g, traffic sensors) set with |V| = N nodes. E is
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a set of edges representing the connectivity among vertices, and A ∈ RN×N is
the adjacency matrix of the graph.

Def.2 (Traffic data) Traffic data is collected from devices (e.g, traffic sensors)
deployed on roads. We denote the traffic condition at time step t as a graph
signal Xt ∈ RN×C , where C is the number of traffic conditions of interest (e.g
traffic speed, traffic flow, etc.).

Problem formulation.1 (Traffic forecasting) In this paper, traffic forecast-
ing with the memory system can be formulated as: Input: a GCN-based traffic
forecasting model Ψ , the memory system M, and the observed data of L time
steps of graph G, X = (Xt−L+1, X2, ..., Xt) ∈ RL×N×C . Output: a forecasting
function Ψ with the memory system which can effectively infer the traffic data
next P time-steps Ψ (X)=(Xt+1, X2, ..., Xt+P−1) ∈ RP×N×C :

Ψ∗,M∗ = arg min
Ψ,M

∥Ψ (X)− Y ∥2 , (1)

where Ψ∗ and M∗ mean the optimized model function and memory system.

3 Method

In this section, we first introduce the learning process of the GCN-based traffic
forecasting model, then show the interaction between the model and the memory
system (as shown in Fig.1). Finally, three core components of the memory system
are elaborated.

3.1 GCN-based Models for Traffic Forecasting

Recently, researchers move to study GCN-based traffic forecasting models due
to the powerful capability of modeling graph structure data. They modify or ex-
tend GNNs to extract spatial features and combine GCNs with time series mod-
els (e.g RNN or Transformer) to learn spatiotemporal correlation. Finally, the
generated spatiotemporal representation is used as input to a decoder (e.g fully
connected layers or more complicated designs) to predict future traffic states.
Given the spatiotemporal representation X as input, GCN performs convolution
on the graph topology G and aggregates features from the neighborhood. The
calculation process of general GCN can be represented as:

X̄ = σ (W · Fg ({Xv} ∪ {Xu, ∀u ∈ N (v)})) (2)

where W are learnable parameters. Xv specifies the representation of node v.
N (v) means neighborhood of node v. Fg(·) is a aggregate function (such as the
mean function) and σ is the activation function. X̄ ∈ RN×Dh represents the
generated spatiotemporal representation, where Dh is the number of channels.
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3.2 The Model with Memory System

The memory system, which includes three components: access interface, mem-
ory module, and feedback interface, can be integrated into GCN-based traffic
forecasting models to boost the representational power.

Specifically, the spatiotemporal learning model use generated spatiotemporal
representation X as a query vector to retrieve knowledge-based patterns stored
in the memory module, which are used to obtain enhanced spatiotemporal rep-
resentation. The process of interactions between the model and the memory
system is as follows:

X̄ = Fm(C⋆M⋆;X) (3)

where M⋆ represents one kind of memory module, where ⋆ ∈ {L,H,R} means
the long-term trend memory, the hierarchical effect memory, and the represen-
tative pattern memory. C⋆ is an access matrix provided by the access interface
and records the slot location information that the model should access according
to the query vector X. Based on the access matrix, the model extracts stored
features from the memory module M⋆. The feedback interface function Fm(·) is
used to integrate the extracted information into the model to obtain enhanced
spatiotemporal representation X̄.

Access interface. The access interface is based on the attention mechanism
and returns an access matrix C according to the query vector to guide the model
to access the memory module, ensuring that the model can accurately extract
useful information and prevent the disturbance of other irrelevant features.

Specifically, we first linearly map the query vector X(l) to a high-dimensional
space and the result is denoted as Q⋆ ∈ RN×dq . The patterns stored in the
memory are treated as key vectors, then, the similarity between the query vector
and key vectors can be computed by dot product operation:

C⋆ (k) =
exp (⟨Q⋆,M⋆ (k)⟩)∑K

k′=1 exp (⟨Q⋆,M⋆ (k′)⟩)
(4)

where M⋆ (k) means k-th slot of the memory module. To increase the capacity,
we model the query vector as a multi-head array and can obtain a similarity
matrix sequence [C1, ..., Ch] ∈ RNh×N×K , where Nh is the number of heads.
The access matrix C can be obtained by aggregating the similarity sequence
with convolution operation across heads:

C⋆ = softmax
(
Γϕ

(
∥Nh
m=0Cm

))
(5)

where Γϕ means the convolution operator with 1×1 size kernel. With the access
matrix, the model can extract patterns stored in the slots:

X̃ = C⋆M⋆ (6)
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Feedback interface. The feedback interface function Fm(; ) is used to integrate
the extracted patterns X̃ from the memory module into the model to enhance
spatiotemporal representation X. In order to filter out redundant information
and achieve effective integration, we use the gate mechanism as the feedback
interface function Fm(; ). Specifically, we first compute a filter gate O:

O = σ
(
Wg

[
X̃,X

]
+ bg

)
(7)

where Wg and bg are learnable parameters. Based on the filter gate O, we
integrate two representation vectors to obtain an enhanced spatiotemporal rep-
resentation:

Fm(X1;X2) = O⊙ X̃+X (8)
where ⊙ is Hadamard product.

3.3 Knowledge-driven Memory Module
The memory module M is used to store knowledge-based patterns and initial-
ized as the parameterized matrix, which can be updated end-to-end with the
model. To effectively learn these patterns, we formulate the loss function based
on exogenous knowledge to constrain the learning of the memory. As mentioned
before, we consider three kinds of exogenous knowledge and construct different
memory modules. For example, for exogenous knowledge that traffic data is pe-
riodic, the long-term trend memory ML ∈ RKL×Dm is used to learn periodic
patterns, where KL is the number of slots in ML and DL means the number
of pattern channels. Similarly, we construct a hierarchical effect memory MH

to model macro-regional patterns and a representative pattern memory MR to
capture representative patterns.

Inspired by three types of traffic exogenous knowledge, we reconstruct the
input sequence from different perspectives and design special loss functions to
align the mapping matrix and the access matrix provided C by the access inter-
face, ensuring the memory to learn structural and addressable patterns.

1. Long-term trend memory. Traffic data is considered to be periodic [13,
14], thus, long-term trends play an important role in the traffic forecasting task.
Driven by this knowledge, we propose long-term trend memory ML to capture
periodic patterns of the traffic network.

The periodic patterns of the nodes with close spatial functionality are con-
sistent [10], thus, to improve the learning effect, we first daily traffic patterns
of each node into KL clusters, which can reflect the functional properties of the
nodes. And the clustering matrix is denoted as SL ∈ RN×KL , where SL [i, g] =
1 means that the daily traffic patterns of node vi belongs to the g-th cluster. In
order to constrain each slot of the memory ML to store corresponding long-term
trends of a cluster, we propose a clustering loss function which is calculated by
the clustering matrix SL and the access matrix CL of memory ML:

LL =
∑
i

∑
j

SL[i, j] log (CL[i, j]) (9)
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2. Hierarchical effect memory. The transportation system is a hierarchical
structure that includes not only basic micro-levels (e.g nodes or road networks)
but also macro-levels (e.g hot spots) [15]. In a macro region, the correlation be-
tween nodes may be closer, thus, modeling the hierarchical effect and learning
coarse-grained patterns of the macro region can provide a broader perspective
for capturing the spatial correlation among nodes. Some researchers use exter-
nal information (e.g POIs, land attributes, or population density) to analyze the
macro-structure of road networks. However, the information may be not read-
ily available due to privacy policies. We propose a hierarchical effect memory
MH which can adaptively learn the coarse-grained patterns of the road network
without external information.

Specifically, rethinking the access matrix CH ∈ RN×KH of hierarchical effect
memory MH , if we set KH much smaller than the number of nodes N , CH can be
viewed as the mapping matrix of microscopic nodes to the macroscopic regions,
and features stored in the memory MH can reflect hierarchical information of
the road network. To promote the model to learn friendly coarse-grained patterns
in the latent space, we introduce an unsupervised graph clustering loss widely
used in deep clustering methods [16–18]. Specifically, we first model auxiliary
target distribution V as an auxiliary which can be computed as:

V[i, j] =
(CH [i, j])

2
/
∑

i CH [i, j]∑
j′ (CH [i, j′])

2
/
∑

i CH [i, j′]
(10)

The auxiliary target distribution V can improve the cluster purity by normal-
izing the contributions. The Kullback-Leibler (KL) divergence between V and
the access matrix CH is used as unsupervised loss:

LH = KL (V∥CH) =
∑
i

∑
j

V[i, j] log
V[i, j]

CH [i, j]
(11)

3. Representative pattern memory. Recently, researchers discovered that
the traffic patterns of the entire road network are extremely redundant [12],
so a few representative patterns shared by all nodes can effectively prompt the
spatiotemporal information of the entire road network. And these representa-
tive patterns can help the model better understand the spatiotemporal state of
the road network. Thus, we propose a representative pattern memory MR to
store the high-dimensional representation of representative patterns of the road
network.

Specifically, for the road network G, we first calculate the daily average flow
vector F of each node. If the sensor records data every five minutes (e.g PeMS
system), the shape of F is equal to (N × 288). Then we split it to obtain the
pattern set using a time window, where the length of the time window is equal to
the time step of the input sequence L. The pattern set is denoted as B ∈ RN×Lk ,
where Lk =

⌊
288
L

⌋
, and this set is proved redundant [12]. We show this fact

with PeMS dataset ( as shown in Fig.1 (c)), which shows the cosine similarity
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distribution between the various patterns in the pattern set B. We can see that
pattern set is biased distribution. So we perform cluster-based downsampling
and the center vector of each cluster is regarded as a representative pattern.
Thus, we use P ∈ RNP×L to denote the representative pattern set, where NP

means the number of representative patterns.
To retrieve the representative pattern that best matches the input traffic

features, We take a pattern x ∈ R1×L of the input sequence X ∈ RN×L as an
example. First, we compute the cosine similarity between it and representative
patterns. Then we select the top-k representative patterns with the highest
cosine similarity into the candidate set, and the corresponding similarity matrix
is denoted as sr ∈ R1×NP . If a representative pattern is in the candidate set,
the corresponding position of sr is the cosine similarity of the two patterns.
Otherwise, it is equal to 0. Similarly, for the entire input sequence X, we get the
matching degree matrix Sr ∈ RN×NP .

Each slot in representative pattern memory MR is used to store the high-
dimensional representation of each representative pattern in P. This is achieved
through a loss function which can force the model to align access matrix Cr and
matching degree matrix Sr, ensuring that the model only accesses the slots which
store representative patterns matching with the input sequence. Specifically, the
following loss function is computed:

LP = ∥Sr −Cr∥2 (12)

3.4 Loss Function with Memory System

For three kinds of exogenous knowledge, we design different loss functions re-
spectively to constrain the model to store specific features. Thus, the total loss
function for deploying the memory system to a traffic forecasting model can be
defined as:

L =
∥∥∥Ŷ − Y

∥∥∥2 + αLL + βLH + µLP (13)

where the first part represents the loss between the predicted values and the
ground-true values. α, β, and µ are hyperparameters to balance each loss.

4 Experiment

4.1 Experiment Settings and Traffic forecasting Models

Dataset We evaluate the effectiveness of the memory system on two widely
used public traffic network datasets, PeMSD3 and PeMSD7. All datasets are
collected from the Caltrans Performance Measurement System (PeMS) and ag-
gregated into 5-minutes windows, thus, there are 288 data points per day. The
peMSD3 dataset records traffic data from 358 sensors from September 1, 2018,
to November 30, 2018. And the PeMSD7 dataset collects monitoring data from
883 sensors from July 1, 2016, to August 31, 2016.
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Data Preprocess Linear interpolation is utilized to fill in the missing values
in each dataset. Min-max normalization is adopted to normalize the data into
the range of [−1; 1] to make the training process more stable. And two datasets
are divided into training sets, validation sets, and testing sets according to the
ratio of 6:2:2 in chronological order, i.e., the earliest 60% of samples are split
into the training set, the subsequent 20% of samples are used for validation, and
the last 20% of samples are used for testing. And we use one-hour historical data
to predict the traffic data after one hour (ie.L=P=12).

Experiment Settings. We optimize all the models with the Adamw optimizer.
The initial learning rates in the PeMSD3 dataset and PeMSD7 dataset are set
to 0.008 and 0.005 respectively. And the learning rate decays to 1% of the initial
value if the loss on the validation set does not decrease for 15 epochs. The
hyperparameters of the models are chosen through a carefully parameter-tuning
process on the validation set. The number of heads in the access interface Nh

is set to 4. And the number of slots in each memory module (i.e KL, KH , and
KR) on the PeMSD3 dataset are equal to 8, 12, and 50 respectively, and they
on the PeMSD7 dataset are set to 12, 16, and 64 respectively.

Metrics. Three metrics - Mean Absolute Error (MAE), Root Mean Square Er-
ror (RMSE), and Mean Absolute Percentage Error (MAPE) are used to evaluate
the prediction performance of the models.

Traffic forecasting models. The memory system is deployed into existing
advanced GCN-based traffic forecasting models.

– STGCN [9] uses graph convolution and temporal convolution for learning
spatial and temporal dependencies, respectively.

– DCRNN [9] combines diffusion graph convolution and recurrent units to
capturing spatiotemporal correlation.

– ASTGCN [19] is a traffic predicting model based on self-attention, which
learns dynamic spatiotemporal correlation in a flexible manner.

– GraphWaveNet [6] proposes node embedding vectors to construct graph
structures, and uses GCN and dilated casual convolution to predict traffic.

– STGNN [20] uses GCN to learn spatial correlation with GRU and Trans-
former to learn global and local temporal dependencies.

– AGCRN [21] proposes an adaptive graph learning method for GCN to
capture the dynamic features of the traffic road network and combines it
with RNN for traffic forecasting.

– HGCN [15] designs a hierarchical GCN to learn the hierarchical features
of traffic networks.

– STFGNN [10] constructs temporal graphs based on DTW algorithm and
distance-based spatial graphs to learn spatiotemporal correlation.



A Knowledge-Driven Memory System for Traffic Flow Prediction 11

Model PeMSD3
MAE RMSE MAPE

STGCN 17.55 16.59 + 4.46% 30.82 29.23 + 5.16% 17.34 16.67 + 3.83%
DCRNN 17.98 17.18 + 4.45% 30.31 29.40 + 3.00% 18.34 17.73 + 3.32%

ASTGCN 17.34 16.87 + 2.71% 29.56 28.78 + 2.64% 17.21 16.90 + 1.80%
GraphWaveNet 19.12 18.45 + 3.50% 32.77 31.21 + 4.76% 19.37 18.59 + 4.03%

STGNN 17.24 17.31 - 0.41% 29.62 29.23 + 1.30% 17.38 17.02 + 2.11%
AGCRN 15.98 15.54 + 2.75% 28.25 27.65 + 2.11% 15.34 15.48 - 0.91%
HGCN 17.21 16.41 + 4.61% 29.34 27.84 + 5.01% 17.15 16.56 + 3.45%

STFGNN 16.77 16.33 + 2.62% 28.34 27.81 + 1.88% 16.30 16.18 + 0.74%

Model PEMSD7
MAE RMSE MAPE

STGCN 25.33 24.32 +4.02% 39.34 37.65 +4.30% 11.21 10.66 +4.91%
DCRNN 25.21 24.23 +3.89% 38.61 37.09 +3.94% 11.82 11.48 +2.88%

ASTGCN 24.21 23.44 +3.18% 37.87 36.21 +4.27% 10.73 10.33 +3.73%
GraphWaveNet 26.39 24.96 +5.41% 41.50 39.41 +5.04% 11.97 11.54 +3.59%

STGNN 24.23 24.19 +0.17% 38.22 37.61 +1.60% 12.01 11.98 +0.25%
AGCRN 22.37 21.87 +2.24% 36.55 35.98 +1.56% 9.12 9.14 -0.22%
HGCN 26.61 25.11 +5.61% 40.03 38.59 +3.69% 11.57 10.87 +6.05%

STFGNN 23.46 22.91 +2.34% 36.62 35.80 +2.79% 9.21 9.01 +2.17%

Table 1: The results of the models with the memory system on two datasets. The
front and second parts of each metric are the original performance of the models
and the performance of the models with the memory system respectively.

4.2 Experiment Result Analysis

The experiment results on the two datasets are shown in Table 1. We observe
that the memory module has a positive effect on the predictive performance of
the models, because various exogenous knowledge provides insights from multi-
ple perspectives on analyzing the evolutionary patterns of traffic data, and thus
knowledge feature stored in the memory system can help models learn compre-
hensive spatiotemporal correlation and enhance prediction performance of the
models. We find that STGCN only constructs the graph structure based on geo-
graphic coordinates to model spatial dependencies, and it fails to learn complex
spatiotemporal correlation. And the memory system can guide STGCN to learn
comprehensive spatiotemporal correlation with exogenous knowledge.

Although DCRNN and AGCRN integrate RNN to capture long-term tempo-
ral trends, hierarchical effect memory and representative pattern memory in the
memory system can provide them with hierarchical features and representative
pattern perspectives of the traffic network, and these features as supplements can
boost spatiotemporal representation learning of model. HGCN uses multi-level
graphs to extract the hierarchical features of the traffic network, so it achieves
better prediction performance than the simple GCN-based model STGCN, and
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it still can benefit from the other two memory modules (i.e long-term trend
memory and representative pattern memory) in the memory system.

STGCN

DCRNN

ASTGCN
GW

N

STGNN

AGCRN
HGCN

STFGNN
15

16

17

18

19

20
M

A
E

Mem
Mem-L
Mem-H
Mem-R

(a) MAE on PeMSD3

STGCN

DCRNN

ASTGCN
GW

N

STGNN

AGCRN
HGCN

STFGNN
27

28

29

30

31

32

R
M

SE

Mem
Mem-L
Mem-H
Mem-R

(b) RMSE on PeMSD3

STGCN

DCRNN

ASTGCN
GW

N

STGNN

AGCRN
HGCN

STFGNN
15

16

17

18

19

M
A

PE

Mem
Mem-L
Mem-H
Mem-R

(c) MAPE on PeMSD3

STGCN

DCRNN

ASTGCN
GW

N

STGNN

AGCRN
HGCN

STFGNN

22

24

26

M
A

E

Mem
Mem-L
Mem-H
Mem-R

(d) MAE on PeMSD7

STGCN

DCRNN

ASTGCN
GW

N

STGNN

AGCRN
HGCN

STFGNN
32

34

36

38

40

42
R

M
SE

Mem
Mem-L
Mem-H
Mem-R

(e) RMSE on PeMSD7

STGCN

DCRNN

ASTGCN
GW

N

STGNN

AGCRN
HGCN

STFGNN
8
9

10
11
12
13
14

R
M

SE

Mem
Mem-L
Mem-H
Mem-R

(f) MAPE on PeMSD7

Fig. 2: Three kinds of memory modules validity analysis.

4.3 Ablation Experiment Analysis

In this section 3, we evaluate the effectiveness of three types of memory mod-
ules on two datasets (i.e. long-trend memory, hierarchical effect memory, and
representative pattern memory). We remove each kind of memory module re-
spectively, and the variants are denoted as Mem-L, Mem-H, and Mem-R. The
experiment results are shown in Fig.2, which show that each kind of memory
module is beneficial to the improvement of prediction performance.

For capturing long-term trends, ASTGCN forms periodic sequences as input
by sampling data points one week apart. DCRNN and AGCRN rely on the
special components RGU to capture long-term trends of traffic data. However,
we find that each variant Mem-L, which combines the memory system without
long-term trend memory, achieves higher errors than each model with three kinds
of memory modules Mem. Because the long-term trend memory module provides
more accurate periodic insights of the entire road network by aggregating daily
patterns of all nodes.

To model complex spatial correlation among nodes, GraphWaveNet, STGNN,
AGCRN, and STFGNN design various methods to generate graph structures,
but they only consider microscopic nodes as entities and fail to learn the macro-
scopic features of the traffic network, and the hierarchical effect memory can
3 We abbreviate GraphWaveNet as GWN.
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complement these features to these models. So the models without the hierar-
chical effect memory achieve higher errors. For HGCN which is a multi-level
GCN-based model to capture the hierarchical structure, the hierarchical effect
memory can still improve the prediction performance. It may be that HGCN per-
forms spectral clustering on the adjacency matrix to get the multi-layer graphs,
which are static and may not accurately describe the hierarchical structure of
the road network. On the contrary, the memory module can adaptively perceive
the road network structure.

The experiment shows representative pattern memory module is widely ap-
plicable because learned representative patterns can represent the traffic state
of the road network and help models more accurately infer the future traffic.
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Fig. 3: Subgraph (a) shows the similarity heatmap of the spatiotemporal rep-
resentation of 100 nodes by STGCN with the memory system. Subgraph (b)
shows the similarity heatmap of spatiotemporal representation by only STGCN.
Subgraph (c) and Subgraph (d) show the traffic similarity between each node
and its k-nearest neighbors in the embedding space.

4.4 Case Study
It is crucial to accurately describe a high-dimensional spatiotemporal represen-
tation of nodes for traffic forecasting. A good spatiotemporal learning model
should learn node representation which can reflect traffic pattern similarity [22].
In this section, we use STGCN as an example to investigate the effect of the
memory system on the spatiotemporal representation learning of the models.
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First, we show two heatmaps of node representation learned by STGCN with
the memory system (as shown in Fig.3 (a)) and node representation learned by
STGCN (as shown in Fig.3 (b)) on the test dataset. We find that the memory
system can help the model learn a well-discriminated representation space. That
is, the representation of nodes with similar traffic patterns is as close as possible,
which benefits the decoder to analyze the representation for predicting traffic.

We further calculate the predicted traffic similarity between each node and its
neighbors. Pearson correlation (POC) and the First-order temporal correlation
(FOC) [22] are used as similarity functions. We observe that the node embedding
of STGCN with the memory system (STGCN-M) shows significant improvement
over embeddings of only STGCN. And it indicates that accessing the memory
system can effectively learn better traffic-related representation.

4.5 Related Work

Traffic forecasting. In recent years, with the development of deep learning,
researchers are devoted to designing advanced deep learning models for traffic
forecasting. For example, ST-ResNet [1] exploits convolutional neural networks
to mine spatiotemporal correlation for predicting the inflow and outflow of each
region. DMVST-Net[4] proposes a local CNN module to learn local spatial depen-
dencies, while LSTM is integrated to learn temporal dependencies. ST-GSP [23]
is a semantic encoder composed of ResNet to capture urban-scale spatial corre-
lation and the influence of external factors.

However, CNNs cannot effectively process graph-structured data. Driven by
recent advances in graph convolutional neural networks, GCNs are introduced
to model spatial dependencies among nodes. For example, T-GCN [24] inte-
grates GCN and GRU to learn spatiotemporal correlation for traffic forecasting.
DCRNN [25] proposes a GCN-based layered coupling method for adaptively
capturing multi-level spatial correlation of traffic networks. ST-GDN [26] uses
diffusion graph convolution to learn local regional geographic dependencies and
global spatial semantics. ST-ChebNet [27] uses Chebyshev graph neural network
to learn complex topology in traffic networks.

Neural networks with memory. Researchers combine memory modules with
neural networks for more powerful learning and reasoning capabilities to solve
several challenging tasks such as one-shot learning [28, 29] and question answer-
ing [30, 31]. [31] designs a memory based network that designs an inference com-
ponents with a readable and writable memory module to remember historical
supporting information for question answering. [29] designs a memory module
that can record network activations of rare events for one-shot learning.

4.6 Conclusion

In this paper, we investigate leveraging exogenous traffic knowledge to improve
model prediction performance and propose a knowledge-driven memory system,
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which can be easily deployed to GCN-based traffic forecasting models to boost
representational power. Three components of the system are carefully designed,
and the access interface is based on the attention mechanism to provide pre-
cise access information for models. Three memory modules including long-term
trend memory, hierarchical effect memory, and representative pattern memory
are used to learn and store knowledge-based patterns according to different ex-
ogenous knowledge, and the models can enhance spatiotemporal representation
by accessing these patterns. And the feedback interface based on the gate mech-
anism is used to integrate extracted information from the memory system into
the model. To evaluate the effectiveness of the memory system, we apply the
memory system to existing traffic forecasting models and conduct experiments
on two datasets, which demonstrate the effectiveness of the memory system.
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