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ABSTRACT

Spatiotemporal traffic forecasting plays a critical role in intelligent

transportation systems, which empowers diverse urban services.

Existing traffic forecasting frameworks usually devise various learn-

ing strategies to capture spatiotemporal correlations from the per-

spective of volume itself. However, we argue that previous traffic

predictions are still unreliable due to two aspects. First, the influ-

ences of context factor-wise interactions on dynamic region-wise

correlations are under exploitation. Second, the dynamics induce

the credibility issue of forecasting that has not been well-explored.

In this paper, we exploit the informative traffic-related context

factors to jointly tackle the dynamic regional heterogeneity and

explain the stochasticity, towards a credible uncertainty-aware traf-

fic forecasting. Specifically, to internalize the dynamic contextual

influences into learning process, we design a context-cross rela-

tional embedding to capture interactions between each context,

and generate virtual graph topology to dynamically relate pair-

wise regions with context embedding. To quantify the prediction

credibility, we attribute data-side aleatoric uncertainty to contexts

and re-utilize them for aleatoric uncertainty quantification. Then
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we couple a dual-pipeline learning with the same objective to pro-

duce the discrepancy of model outputs and quantify model-side

epistemic uncertainty. These two uncertainties are fed through a

spatiotemporal network for extracting uncertainty evolution pat-

terns. Finally, comprehensive experiments and model deployments

have corroborated the credibility of our framework.
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1 INTRODUCTION

Rapid urbanization has introduced large-scale increases of trans-

portation demands, posing great challenges to sustainability and

urban management in modern cities [1, 2]. Therefore, Intelligent

Transportation System (ITS), especially traffic forecasting, has at-

tracted huge attention from both academia [3–7] and industry [8, 9].

As a pivotal part of ITS, traffic forecasting is powerful to promote

the efficiency of urban travelling [3], increase profits of ride-sharing
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platforms [10], and facilitate the management of urban safety [11],

thereby enabling intelligent and efficient urban life.

In the literature, existing traffic forecasting frameworks learn

to establish the mapping functions from historical observations to

targets, based on various spatial aggregations [12, 13], and sequence

learning schemes [3, 4, 14]. Specifically, to extract multi-level and

high-level correlations, literature [15] devises a multi-range atten-

tive bicomponent graph convolutional network while [16] proposes

a 3-dimensional adjacent matrix, to respectively endow multi-scale

correlation learning and spatial-temporal fully-connected correla-

tion construction. Even though, all these methods construct the

correlations from the volume itself, ignoring two critical issues,

i.e., the dynamic region-wise correlations induced by interactive

urban circumstances, and the credibility of these predicted values.

Hence, lacking these considerations contribute to unreliable and

irresponsible learning frameworks.

In real scenarios, traffic volumes are the reflection of human

daily routines thus influenced by various urban circumstances. We

formalize all external urban circumstances including functionality,

weather, timestamps and day types as contexts, and illustrate a

series of region-wise volume patterns under context factor-wise in-

teractions in Figure 1(a). As observed, traffic volumes between CBD

and residential blocks are sensitive to day of week while volumes

between residential blocks and entertainment areas are sensitive to

weather on weekends. Such observations demonstrate that different

regional functionalities can interact with the same weather context

to induce various traffic patterns, leading to heterogeneous region-

wise correlations. A more interpretable reason is that weather can

influence the non-necessary activities but have fewer effects on

indispensable travelling. To this end, even some pioneering works

involve contexts to correct the final prediction intensity [3, 6, 17, 18]

still fail to consider the root causes of such dynamic correlations, i.e.,

interactions of various contexts, yielding suboptimal performances.

Furthermore, the complex and dynamic correlations can directly

induce another critical issue, i.e., the prediction stochasticity and

credibility [19]. Seriously, an inaccurate prediction will provide

misleading numerical decision-making basis for police force assign-

ment and route planning of autonomous driving [20, 21], resulting

in irreversible crisis on human safety. Therefore, we formally raise

the credibility issue in traffic forecasting.
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Figure 1: Motivation of our solutions.𝑾1,𝑾2,𝑾∗
are model

parameters of neural network 1, neural network 2 and the

potential distributions of model parameters.

The solution to quantifying the prediction credibility is to mea-

sure the potential differences between groundtruth and predicted

values, which can be named as uncertainty [21–23]. Prediction un-

certainty can be generally classified into two categories as follows.

The aleatoric one, induced by unobservable factors and data noise,

characterizes the difficulty of learning tasks, while the epistemic

one captures potential distributions of model parameters, which

can be explained away with increasing training samples [21, 24].

Since two categories of uncertainty play different roles in learning

systems, explicitly identifying them can better understand the algo-

rithm, hence increasing its robustness and reliability. Unfortunately,

existing works of uncertainty-aware spatiotemporal learning, even

the latest two studies [22, 25] cannot explicitly distinguish the two

sources of uncertainty, resulting in under exploration of credible

learning systems. To perform a detailed analysis of uncertainty,

considering the significant role of context factors, we further draw

maps of prediction bias on a well-known traffic forecasting model

(STG2Seq) [3], a.k.a. error maps, associated with various contexts in

Figure 1(b). We observe that the prediction accuracy is varied with

context factors, and the reason lies in the fact that different con-

texts can induce heterogeneous occurrence possibility of accidental

but unobservable events on the road network. This observation

provides insights that context factors can partially explain the un-

certainty, but it is still unclear on how to leverage the contexts and

techniques to disentangle two types of uncertainty.

As discussed above, a credible traffic forecasting system requires

highly efficient data exploitation and uncertainty type-aware pre-

diction. By resorting to informative contexts, two challenges still

remain unresolved for credible forecasting, 1) capturing context

interactions to model dynamic region-wise correlations, 2) disen-

tangling and quantifying two types of uncertainty.

In this paper, we develop a Credible SpatioTemporal learning

framework (CreST), exploring the traffic-related context factors to

cooperatively overcome above challenges. Specifically, to internal-

ize the dynamic contextual influences into region-wise correlation

learning, we propose a Context-Condition SpatioTemporal net-

work (C2ST), which captures context-wise relational interactions

to achieve context embedding and generates region-wise proximity

based on above embedding. To enable high-quality context embed-

ding and the awareness of context-target regularity, we introduce

a context-target highway for representation enhancement and task

regularization. From the perspectives of human behavior patterns

and model uncertainty on ensembling disagreement, we propose

a Context-Discrepancy Uncertainty Quantification (CDUQ) to re-

spectively quantify model-side epistemic uncertainty and data-side

aleatoric uncertainty. First, we take contexts to interpret data-side

aleatoric uncertainty, as contexts can reflect the occurrences of

unobservable events. We then re-utilize the context embedding to

construct data-side uncertainty. Second, inspired by dropout [21, 26]

and ensemble-based uncertainty learning [24], we conclude that

different models with the same objective can imitate the param-

eter distributions and thus the disagreement in ensemble models

describes the prediction confidence and model uncertainty [27, 28].

Therefore, we couple two learning pipelines and devise an ensem-

ble scheme to capture model-side discrepancy, which is illustrated

in Figure 1(c). Finally, since residual measures how much the pre-

diction result deviates from groundtruth, we thereby introduce

residuals as an indicator proxy to allow uncertainty predictable.

Coherently, we exploit the semantic context embedding and dual

learning pipeline to support our CDUQ for type-aware uncertainty

disentanglement. We make the following contributions,
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• We propose a credible spatiotemporal learning model for ITS,

which simultaneously enjoys high-quality data exploitation

and fine-grained type-aware uncertainty quantification.

• CreST exploits context factors by coupling two designed

components, C2ST and CDUQ,. Specifically, C2ST captures

cross interactions between context factors and generates

virtual topology while CDUQ leverages the ensembling to

imitate themodel output discrepancy, and harnesses contexts

to achieve the data-aspect uncertainty.

• Experiments on three traffic datasets reveal that our solution

not only outperforms other uncertainty quantification by

10%, but also demonstrates the uncertainty regression can

boost learning performances from 18.20% to 28.50%.

2 RELATEDWORK

2.1 Traffic forecasting

Traffic forecasting is a classic spatiotemporal learning task, where

its solutions can be categorized into traditional machine learning

and deep learning. Regarding traditional learning-based methods,

context-aware matrix factorization [29] and network kernel den-

sity estimation [30] are proposed to capture the spatial dependen-

cies, while various autoregression methods including ARIMA [31],

Moving Average [32] are devised for sequence pattern extractions.

However, these methods capture the regularity only from one sin-

gle view, failing to consider the joint spatial-temporal correlations.

Deep learning-based solutions are capable of making up the fitting

capacity issue, and these works can be classified as context-agnostic

and context-aware. For context-agnostic ones, [33, 34] and [5] re-

spectively design an ST-attention and an adaptive graph learning

to respectively enable the model to focus on the most beneficial

spatial-temporal features. Besides, diverse temporal learning solu-

tions including GRU [5, 12], LSTM [11] and TCN [3] are proposed to

enhance spatiotemporal learning. Unfortunately, context-agnostic

methods neglect the significance of contexts in forecasting, yielding

suboptimal performance. Latest works employ a fully-connected

neural network to encode the contextual information and then ag-

gregate them with main stream observations with element-wise

addition [3, 6, 17, 18] or concatenation [35]. Although these meth-

ods incorporate the context to correct intensity of predictions, they

still fail to enable contexts to guide dynamic aggregations. Given

heterogeneous interactions between contexts, the aggregation pat-

terns of spatiotemporal elements should be reformed.

2.2 Uncertainty quantification for deep learning

Early work [36] categorizes uncertainty into epistemic and aleatoric,

which has been widely recognized by subsequent studies. By as-

suming the learnable variables follow Gaussian distribution, off-the-

shelf literature captures the learned model parameter distributions

for epistemic uncertainty quantification. They devise various tech-

niques, including Dropout [23, 37, 38], Ensemble [24] and imitated

Brownian motions [39] to derive the variances of multiple pre-

dictions as their epistemic uncertainty. Regarding aleatoric one,

existing methods often construct mappings from input data to such

uncertainty and maintain the consistency between errors and learn-

able aleatoric uncertainty with loss functions. However, since these

methods are limited in image-like static data, it is naturally difficult

to adapt them to spatiotemporal learning.

Encouragingly, pioneering works of numerical weather [37, 38]

and meteorology forecasting [23] advance spatiotemporal frame-

work towards uncertainty quantification. In detail, [37] employs

a sampling-computing strategy to identify different categories of

uncertainties while [23, 38] speculate the potential uncertainty of

results by adjusting the confidence quantiles. However, [23, 38]

cannot adaptively identify uncertainty categories and [37] fails to

perform real-time speculation considering multiple contexts. More

recently, [22] provides comprehensive benchmarks on spatiotem-

poral uncertainty learning, and [25] devises an ST-variance-based

uncertainty indicator. Given context-induced heterogeneous un-

certainty, these above-mentioned works either fail to internalize

the context into spatiotemporal uncertainty [22, 23, 38], or ignore

the model fitting capacity [25], leading to under exploration of a

real-time and type-aware uncertainty learning system.

3 NOTATIONS AND PROBLEM DEFINITION

Definition 1 (Urban graph and urban regions). The
whole city is equally discretized into 𝑁 regions by longitudes and lati-
tudes, and constructed as a directed urban graph𝐺(V, E), where each
region in the city constitutes of the vertex set V = {𝑣1, 𝑣2, · · · , 𝑣𝑁 }.
E = {𝑒𝑖 𝑗 |1 ⩽ 𝑖, 𝑗 ⩽ 𝑁 } is a set of edges describing the dynamic
region-wise proximity.

Definition 2 (Observations of regional traffic ele-

ments). Time domain can be equally discretized into an interval
set T = {1, 2, 3...,𝑇 , T + 1, ...}. We formulate the main observations
of spatiotemporal traffics as {X = 𝑿𝑡 |𝑡 ∈ T }, where the element 𝑿𝑡

denotes the citywide traffic observation, and 𝑥𝑡
𝑖
∈ 𝑿𝑡 (1 ⩽ 𝑖 ⩽ 𝑁 ) is

the traffic observation at region 𝑣𝑖 during interval 𝑡 .

Definition 3 (Context factors). We define the traffic covari-
ates, which are related with traffics but not for predictions, as context
factors. Given 𝑀 types of context factors C = {𝐶1,𝐶2, · · · ,𝐶𝑀 }, the
descriptor of𝑚-th context type at region 𝑣𝑖 during interval 𝑡 can be
denoted as the 𝑐𝑡

(𝑚,𝑖)
∈ R1×𝑑𝑚 , where 𝑑𝑚 is the vector dimension

of𝑚-th type context factor. The concrete context types can include
temporal context, spatial context, as well as weather where each type
can involve multiple observations.

Problem 1 (Credible spatiotemporal traffic forecast-

ing task). Our credible learning is interpreted as the predicting
main observations and potential uncertainty by boosting utilization
of context factors. Therefore, given historical spatiotemporal observa-
tions, 𝑿1, ...,𝑿𝑇 and their counterpart time-varying context factors
𝒄1, 𝒄2, ..., 𝒄𝑇 , we perform credible spatiotemporal forecasting in the
following 𝑙 time steps, (�̂�𝑇+𝑡 ,𝝈𝑇+𝑡 )(𝑡 = 1, 2, ..., 𝑙) by simultaneously
capturing dynamic region-wise correlations induced by context inter-
actions and tackling type-aware uncertainty learning challenge.

4 METHODOLOGY

4.1 Framework overview

Illustrated in Figure 2, the Credible SpatioTemporal learning frame-

work (CreST) consists of twowell-designed neural networks, Context-

conditioned SpatioTemporal network (C2ST) for context condi-

tioned aggregations based on dynamically relating citywide regions,
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Figure 2: Overview of Credible SpatioTemporal learning framework (CreST)

and Context-Discrepancy Uncertainty Quantification (CDUQ) for

disentangling epistemic-aleatoric uncertainty.

4.2 Context-conditioned spatiotemporal

network

Our Context-conditioned SpatioTemporal network (C2ST) is pro-

posed to learn the dynamic region-wise proximity conditioned on

contexts, and perform the context-conditioned aggregations. It is

composed of three components below.

4.2.1 Context-cross relational embedding. The embedding of con-

text factors plays a vital role in context-aware forecasting, but

existing embedding strategies usually neglect the influences of

context-wise interactions, leading to suboptimal and unreliable pre-

dictions. In our work, we devise a novel context-cross relational

embedding to quantify context-wise mutual interactions, by draw-

ing the inspiration from relational GNN [40]. Our context-cross

relation learning takes each context factor as an individual en-

tity and feeds them into a relational neural network. By denoting

�̃�𝑚 ∈ R𝑁×𝑑𝑚
as the citywide context tensor for type𝑚, we then

learn the citywide context-cross latent embedding Zc ∈ R𝑁×𝐾
by,

Zc =

𝑀∏
𝑚=1

(̃c𝑚 + bm)w
(m,m+1) (1)

where each region is with a 𝐾-dimension embedding and the learn-

able weight bm ∈ R1×𝑑𝑚 accounts for obtaining vectors of continu-

ous values. Then the relations and interactions between each con-

text factor can be well captured by w
(m,m+1) ∈ R𝑑𝑚×𝑑𝑚+1

(𝑚 < 𝑀).

The last weight w
(M,M+1) ∈ R𝑑𝑀×𝐾

is a linear transformation that

converts the context dimension from 𝑑𝑀 to 𝐾 , achieving citywide

context embedding Zc. We denote Zc(𝑖) ∈ Zc as the 𝑖-th row of

Zc and consider it as the integrated context embedding of 𝑖-th re-

gion. As a result, the context-wise interactions and target-related

semantic correlations can be progressively aggregated into our

context-cross relational representation.

4.2.2 Context-target information highway. To encode the aware-

ness of context-target regularity, we design another learning pipeline,

context-target information highway by establishing mappings from

contexts to main prediction targets. This context-target highway

treats regional context factor combinations and targeted time se-

ries as sample pairs. Actually, we realize the highway in a simple

but effective way, i.e., directly reusing learned Zc to predict the

targeted time series. For each region 𝑣𝑖 , let the output of context-

target highway be Ŷc(𝑖), the predicted sequence can be obtained by

the context-to-sequence linear transformation 𝒉𝒄𝒔 ,

Ŷ𝑐 (𝑖) = 𝒉𝒄𝒔 (Zc(𝑖)) = ReLU(Zc(𝑖) ∗ wcs + bcs) (2)

where wcs ∈ R𝐾×𝑙
and bcs ∈ R𝑁×𝑙

are learnable parameters. The

training objective of this information highway is minimizing the

element-wise MAPE of the predicted sequence, which is shared

with the main task in the next subsection. This learning process

will backpropagate the gradient to weights on trainable context

embedding and force them to gain semantics conforming to targets.

4.2.3 Context-conditioned spatiotemporal aggregation. Since we
have obtained the interaction-involved context embedding, we can

exploit such semantic embedding to perform spatiotemporal aggre-

gations. As adjacent matrix describes the element-wise proximity

and guides spatial aggregations, we thus formulate the context-

conditioned adjacent matrix as the function of context-cross rela-

tional embedding to dynamically relate pairwise regions. To this

end, virtual graph topology is generated with Zc by,

Ã = Trans(Zc) = Softmax(ZcQ + q) (3)

In particular, Trans is a linear transformation parameterized by

Q ∈ R𝐾×𝑁 , q ∈ R𝑁×𝑁
, transferring the context embedding into the

formation of adjacent matrix and assigning the node-wise proximity

in a data-driven manner. Softmax serves to normalize the adjacent

proximity regarding each node and constrains the summation of

all neighboring proximity to 1.

After that, we stack several GNN blocks to perform message

passing through the graph topology. Here we take one of the GCN

blocks to demonstrate the graph convolution by denoting the 𝑘-th

hidden layer of GNN as H𝑘 ,

H𝑘 = ReLU(
˜D𝑡
𝐴

−1/2
Ã𝑡 ˜D𝑡

𝐴

−1/2
H𝑘−1Wgc

𝑘−1
) (4)

where Ã𝑡 is the context-conditioned adjacency of Ã at interval 𝑡

and Ã𝑡 = A𝑡 + I𝑁 . Matrices I𝑁 and D̃𝑡
𝐴
are an 𝑁 -order identity

matrix and a degree matrix for Ã𝑡 . We respectively instantiate
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H0

𝐺
as XP𝑐

, XP𝑑
and XP𝑙

in each parallel GNN block, consisting

of the consecutive observations on the levels of closeness, daily

periodicity, and long-term trends, following common settings in

traffic forecasting [17, 18]. W𝑘
𝑔𝑐 are a series of learnable parameters.

Regarding temporal learning, we leverage an LSTM parame-

terized by W
lstm

to capture temporal evolutions, and output the

spatiotemporal learning-based prediction results Ŷ𝑇+𝑡
𝑓

,

Ŷ𝑇+𝑡
𝑓

= LSTM((HP𝑐 ,HP𝑑 ,HP𝑙
),W

lstm
) (5)

We name Ŷ𝑇+𝑡
𝑓

as C2ST-Output and consider it equivalent to the

outputs of our main spatiotemporal forecasting task Ŷ𝑇+𝑡 .

4.2.4 Shared objectives of daul-pipeline learning. Since the context-
target information highway aims to plug the awareness of context-

target regularity into our network, we take the training objectives

of both information highway and spatiotemporal prediction into the

same one, i.e., regressing the main target observations. Besides, to

enable the learned information to share across these two pipelines,

we introduce a similarity regularization to preserve the similarity

between these two predicted sequences. Then the shared objectives

of these two pipelines can be three-fold, two regression losses, and

one similarity constraint. We formalize it as follows,

𝐿𝑜𝑠𝑠𝑆𝑇 = MAPE
f
+ 𝛽MAPEc + 𝛾𝑠𝑖𝑚(𝑌𝑐 (𝑖), 𝑌𝑓 (𝑖))

=

1

𝑁𝑙

𝑙∑︁
𝑡=1

𝑁∑︁
𝑖=1

{(
𝑦𝑡
𝑓
(𝑖) − 𝑦𝑡

𝑖

𝑦𝑡
𝑖

)

2

+ 𝛽(
𝑦𝑡𝑐 (𝑖) − 𝑦𝑡𝑖

𝑦𝑡
𝑖

)

2

}

− 𝛾

𝑁

𝑁∑︁
𝑖=1

𝑌𝑐 (𝑖) · 𝑌𝑓 (𝑖)
| |𝑌𝑐 (𝑖) | | | |𝑌𝑐 (𝑖) | |

(6)

where 𝑠𝑖𝑚 is the cosine similarity measurement, 𝛽,𝛾 are two hyper-

parameters for balancing the losses among MAPE of the main task,

context-target MAPE and cosine similarity. So far, we have realized

a daul-pipeline learning where they share the same learning objec-

tives, and we can respectively consider context-target outputs Ŷ𝑐
and C2ST-Outputs Ŷ𝑓 as coarse-grained predictions from contexts

and fine-grained predictions from all historical observations.

4.3 Context-discrepancy uncertainty

quantification

4.3.1 Motivations. Firstly, residual measures the differences be-

tween model outputs and groundtruth, implicitly representing the

model fitting capacity and prediction bias of the trained model.

We take the residual derived from the training process as an un-

certainty indicator, and let it as an additional regression objective

to enable online uncertainty inference. We disentangle the uncer-

tainty into data-side and model-side. Specifically, we attribute the

data-side aleatoric uncertainty to context factors due to their poten-

tial of reflecting occurrences of unobservable events. For epistemic

uncertainty, inspired by ensembling [24] and dropout [21, 26] uncer-

tainty quantification, we argue that different models with the same

objective can imitate the parameter distributions, thus the disagree-

ment across diverse sub-models can capture the model uncertainty.

Therefore, we formulate our CDUQ with context-explained uncer-

tainty learning, model discrepancy-based uncertainty learning and

spatiotemporal uncertainty propagation.

4.3.2 Context-explained uncertainty. First, we capture aleatoric

uncertainty uc by a context-explained uncertainty network,

uc = ReLU(ZcR) (7)

where R ∈ R𝐾×𝑙
is the neural weight converting the dimension

of context embedding into the same as the time step, and we can

obtain the context-explained uncertainty uc ∈ R𝑁×𝑙
.

4.3.3 Model discrepancy-based uncertainty. We resort to model en-

sembling to capture the potential distribution of model parameters.

Actually, the differences between coarse-grained context-target

learning and fine-grained spatiotemporal predictions are two dif-

ferent instantiations with the same objectives, thus they can im-

itate the parameters distributions of models. We then introduce

the third role of context-target highway, i.e., constructing an en-

sembled model by involving C2ST outputs, and extracting model

discrepancy to derive model-side uncertainty. We then calculate the

differences between C2ST outputs and context-target highway, and

impose a learnable weight V ∈ R𝑙×𝑙 to allow achieving model-side

uncertainty up ∈ R𝑁×𝑙
,

up = ReLU((Ŷc − Ŷf )V) (8)

where ReLU preserves the positive definiteness. This uncertainty

is the function of predicted results, which can be further deemed

as prediction-correlated uncertainty. After that we aggregate them

with an adjustable parameter 𝛼 to achieve the overall uncertainty

uo ∈ R𝑁×𝑙
conditioned on three factors, contexts, model property,

as well as prediction results,

uo = 𝛼uc + (1 − 𝛼)up (9)

4.3.4 Spatiotemporal uncertainty propagation. The evolution of

spatiotemporal uncertainty is composed of two components, spa-

tial propagation and temporal evolution. Firstly, to imitate the spa-

tial propagation of uncertainty, we design one GNN-based uncer-

tainty propagation layer by leveraging the topology information.

To achieve the topology matrix, we first derive a distance-based ad-

jacent matrix Adist ∈ R𝑁×𝑁
by considering region-wise Euclidean

distance as the proximity,

𝐴dist (𝑖, 𝑗 ) = 𝑒
− dist(𝑣𝑖 ,𝑣𝑗 )

𝜏 (10)

where𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗 ) represents the Euclidean distance between regions

𝑣𝑖 and 𝑣 𝑗 , and 𝜏 is the scalar controlling the bandwidth of distance

metric. Assuming D is the degree matrix for Adist, the topology
matrix Γ can be calculated based on Adist,

Γ = I + S, S = D−1/2AdistD
−1/2

(11)

Thus, we have the spatially correlated overall uncertainty uos with
one-layer message passing,

uos = GNN(uo, Γ) = ReLU(ΓuowG) (12)

where wG are learnable weights for spatial filters. Secondly, to

simulate the temporal propagation, we perform the step-aware un-

certainty transformation to learn the gated scalar by incorporating

the embedding of timestamp 𝒕𝒔𝑖 for step 𝑖 . We can obtain the final

predicted overall uncertainty u∗o as follows,

u∗o = uos ⊙ TempGate(𝒕𝒔𝑖 ) = uos ⊙ tanh (we · 𝒕𝒔𝑖 ) (13)
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Table 1: Dataset statistics (m: million, k: thousand)

Dataset

Category

of datasets

# of

records

Time Span

# of

regions

SIP

Surveillance 2.7 m 01/01/2017-

03/31/2017

108

Weather 4.3k

NYC

Taxi trips 7.5 m 01/01/2017-

05/31/2017

354

Weather 7.4k

Metr-LA

Loop

detectors

4.9 m 03/01/2012-

06/30/2012

207

Weather 5.7k

where ⊙ denotes element-wise product, we is the learnable param-

eter for time step embedding, and TempGate is a tanh function

accounting for temporal evolution learning.

Finally, in our CDUQ, taking the residual 𝑟𝑒𝑠
𝑗
𝑖
as the learning

objective regarding 𝑣𝑖 and 𝑗 , we have loss function,

𝐿𝑜𝑠𝑠𝑢𝑛𝑐 =
𝑁∑︁
𝑗=1

𝑙∑︁
𝑖=1

(𝑢
𝑗∗
𝑜,𝑖

− 𝑟𝑒𝑠 𝑗
𝑖
)

2

(14)

Noted that 𝑢
𝑗∗
𝑜,𝑖

is equivalent to the predicted uncertainty, 𝜎
𝑗
𝑖
.

4.4 Optimization

The integrated loss of our credible spatiotemporal learning are three-

fold, context-conditioned spatiotemporal learning, context-target

learning, and uncertainty quantification. Then it is formulated as,

𝐿𝑜𝑠𝑠 =MAPE𝑓 (Y, Ŷf ) + 𝛽MAPE𝑐 (Y, Ŷc) + 𝛾cos(Ŷc, Ŷf )

+ _𝐿𝑜𝑠𝑠𝑢𝑛𝑐
(15)

In particular, we consider ST forecasting as the main task, and

(𝛽,𝛾, _) are parameters balancing importances among context-target

highway, cosine similarity and uncertainty learning.

4.5 Discussions of CreST

Summary and distinctions. CreST is a hybrid network to cooper-

atively perform both context and uncertainty-aware learning. Our

CreST is capable of dynamically relating region-wise proximity

based on the context embedding, and further derives the aleatoric

and epistemic uncertainty with contexts and model discrepancy.

Model efficiency. Our CreST introduces two additional costs com-

pared with traditional GNN. (1) To realize the context-wise interac-

tion extractions, we devise a context-wise learning weight. Let 𝑑𝑚
be the expected dimension of all M-type context embedding where

𝑑𝑚, 𝑀 ≪ 𝑁 , the additional costs can be O(𝑀𝑑2𝑚) that is ignorable to

overall architecture. (2) To achieve message passing of uncertainty,

we perform one-layer GNN and the additional costs are linear to

number of edges of A𝑑𝑖𝑠𝑡 , which will not bring much burden to

overall learning. Uncertainty learning increases performance.

Since less residual indicates higher accuracy, minimizing the re-

gressed residual can in fact bring in performance gains, and alleviate

model variations, thus improving prediction credibility.

5 EXPERIMENTS

5.1 Dataset description

We collect diverse datasets of traffics including Suzhou Industry

Park Surveillance, NYC taxi trips
1
and highway loop detectors

of Metr-LA
2
. The statistical descriptions of datasets are figured

in Table 1. In particular, we collect three types of context factors,

i.e., spatial context of randomly initialized location descriptions,

temporal contexts of day of week and timestamps, weather contexts

including weather categories, precipitation and wind speeds
3
.

5.2 Implementation details

5.2.1 Experimental setting. For each dataset, we dividewell-organized
samples into 60%, 30% and 10% for training, testing and validation.

All methods are implemented in Tensorflow 1.14.0 or Pytorch 1.10.0,

on one Tesla v100. The categorical context is encoded with one-

hot embedding and transferred into fixed-length vectors. In the

implementation, we feed each type of contexts into our network

to capture context-wise interactions. We adjust hyperparameters

of all baselines to adapt to these datasets, and feed the raw con-

text embedding into them if they have corresponding placeholders.

For our hyperparameters, we stack 3 GCN layers on SIP and Metr-

LA, and 2 GCN layers on NYC, and set 1 LSTM layer across all

datasets. We instantiate the hyperparameter of task-wise weight as

𝛽 = 0.3, 𝛾 = 0.3, _ = 1.0 on SIP and Metr-LA, 𝛽 = 0.2, 𝛾 = 0.2, _ = 1.0

on NYC. The uncertainty aggregation weight is set as 𝛼 = 0.5 across

all datasets for simplification. We apply our model to predict the 6

future points given past 12 points.

5.2.2 Evaluation metrics. Given region 𝑣𝑖 and interval 𝑡 , we denote

the predicted point estimation 𝑌 𝑡
𝑖
, predicted uncertainty 𝜎𝑡

𝑖
, and

groundtruth𝑌 𝑡
𝑖
. For ST task, we employ RMSE andMAPE asmetrics.

For evaluation of UQ task, we borrow the prediction interval cover-

age probability (PICP) [38], and introduce the metric of uncertainty

percentage (UP), to evaluate whether the uncertainty can accurately

capture the groundtruth and whether the predicted uncertainty is

rational to represent uncertainty, where UP= (

∑
𝑖

∑
𝑡

𝜎𝑡
𝑖

/
𝑌 𝑡
𝑖
)/(𝑁 × 𝑙 ).

5.3 Competitors

ST learning. (1) Traffic transformer: A variant of Transformer

and captures temporal continuity, periodicity as well as the spatial

dependency [41]. (2) STG2Seq: A hierarchical graph convolution

to capture spatial and temporal dependencies for passenger demand

forecasting [3]. (3) MDL : A collective human mobility forecast-

ing method which simultaneously models nodes and edges in a

multi-task scheme [18]. (4) Graph-WaveNet: An improved ver-

sion of DCRNN [12] by constructing learnable dynamic region-wise

proximity and replacing the GRU with dilated convolutions [42].

Uncertainty quantification competitors.We evaluate the uncer-

tainty learning by plugging our credible spatiotemporal learning

framework with existing uncertainty quantification methods. (1)

Dropout-based BNN: Realize this BNN method with dropout [43].

1
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

2
https://github.com/liyaguang/DCRNN

3
Collected from API: https://api.weather.com
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Table 2: Performance comparisons on three datasets

Methods

SIP NYC Metr-LA

MAPE RMSE UP MAPE RMSE UP MAPE RMSE UP

Baseline for

spatiotemporal

forecasting

Traffic transformer 23.29% 163.55 - 54.67% 76.64 - 9.71% 1.333 -

STG2Seq 31.66% 184.23 - 17.61% 22.16 - 22.20% 3.873 -

MDL 34.45% 192.96 - 18.62% 24.98 - 36.67% 4.552 -

Graph-WaveNet 45.91% 218.11 - 27.39% 36.66 - 12.06% 2.399 -

CreST 19.05% 144.32 - 12.59% 22.07 - 10.63% 2.125 -

Methods MAPE PICP UP MAPE PICP UP MAPE PICP UP

Baseline for

uncertainty

learning

SDE 26.14% 60.96% 0.587 11.87% 67.97% 0.558 12.15% 79.13% 0.895

DeepEnsembles 25.80% 69.72% 0.381 23.84% 74.25% 2.710 24.22% 77.60% 2.937

Dropout BNN 35.83% 61.86% 0.419 26.51% 74.41% 0.450 28.15% 75.44% 0.749

CreST(Ours) 19.05% 84.74% 0.294 12.59% 85.37% 0.419 10.63% 86.57% 0.379

Sensitive to 

weather on 

workdays
(a) Feb 22nd, 2017, Rainy workdays

(b) Mar 14th, 2017, Sunny workdays

8:00-8:30 9:00-9:30

8:00-8:30 9:00-9:30

A

A

B B

Volume 

Volume 

A

(c) Context embedding of (c)

A: CBD C: Residential area
C

Predicted accident

uncertainty
Error map

Accident

Ground-truth

(d) Uncertainty and error maps on NYC accident prediction

2

11

2

C

Figure 3: Deployed system and visualized case studies

Table 3: Performances on ablative spatiotemporal learning

Variants

MAPE

SIP NYC Metr-LA

CreST-FW 28.07% 25.96% 26.39%

CreST-CG 21.95% 18.42% 23.93%

CreST-CT 23.54% 20.20% 16.78%

Integrated CreST 19.05% 12.59% 10.63%

Table 4: Performances with uncertainty samples removed

Quantile

SIP NYC Metr-LA

MAPE/PICP MAPE/PICP MAPE/PICP

10% 18.35%/85.07% 13.88%/86.37% 10.20%/87.88%

20% 17.21%/86.59% 13.02%/87.42% 9.31%/88.54%

30% 15.44%87.39% 12.47%/88.75% 8.43%/90.12%

(2) DeepEnsembles: Train a series of neural networks with differ-

ent initializations [24]
4
. (3) SDE: An uncertainty learning model

with injections of noise and out of distribution samples [39].

4
The number of ensembled networks is set as 5, according to [24].

Figure 4: Performance on different hyperparameter settings

5.4 Spatiotemporal forecasting evaluation

5.4.1 Effectiveness of spatiotemporal forecasting. The results are re-
ported in the upper half of Table 2. CreST outperforms the best com-

petitor by 18.20% (transformer), 28.50% (STG2Seq) on SIP and NYC,

and achieves comparable performance with traffic transformer on

Metr-LA. Specifically, Traffic transformer achieves the best perfor-

mance among baselines on SIP and Metr-LA, but still fails to model

the taxicab trip records on NYC, probably due to the larger fluc-

tuations and some specific patterns of NYC. In contrast, STG2Seq,
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Table 5: Performances on different neural dimensions

LSTM GNN

Dim 80 96 108 32 64 96

SIP

MAPE 0.30 0.25 0.38 0.25 0.23 0.32

Dim 56 60 64 2 4 8

NYC

MAPE 0.13 0.26 0.26 0.13 0.16 0.24

Dim 160 180 192 16 32 64Metr

-LA MAPE 0.12 0.11 0.14 0.18 0.16 0.11

tailored for taxi demand prediction, obtains the best results on

NYC. STG2Seq and traffic transformer incorporate the timestamp

and weather contexts into frameworks, but they cannot capture

factor-wise interactions and fail to guide directional aggregations.

5.4.2 Ablative study for spatiotemporal forecasting. The ablative
variants are as below: (1) CreST-FW: Learn context embedding

with concatenations of context vectors rather than context-wise in-

teractions. (2) CreST-CG: Replace the context conditioned dynamic

topology with distance-based adjacency. (3) CreST-CT: Remove

context-target highway, remain GNN learning. Tables 3 lists the per-

formances of ablative variants. As shown, context-cross embedding

is the most effective module in our framework (gain performance

of 32.13%, 43.79%, 52.52% on three datasets). The context-target

highway leads to a little promotion as it can be viewed as the regu-

larization overcoming the overfitting issue.

5.5 Uncertainty quantification evaluation

5.5.1 Comparison of prediction intervals. The results are listed in

the bottom half of Table 2. Our uncertainty-based prediction in-

tervals capture the most groundtruth and achieve the least UP for

uncertainty indicator on all datasets. For SDE, it is a relatively robust

uncertainty learning scheme and surpasses other baselines on fore-

casting metrics. This is because that it can be viewed as a denoise

AutoEncoder where pure and noise-incorporated observations can

be trained alternately. Even though, all baselinemethods are inferior

to ours on two aspects. First, they provide collective and statistical

value based sampling techniques, which are context-agnostic and

cannot be learned individually. Thus they tend to overestimate the

variations on some results and fail to provide context-specific un-

certainty. e.g., DeepEnsembles have 2.710 and 2.937 UPs on NYC

and Metr-LA. Second, these methods cannot internalize both data

and model dependency into uncertainty indicators, and they are

not tailored for spatiotemporal learning.

5.5.2 Quality of uncertainty learning. To investigate the quality of

learned uncertainty, we remove the prediction results with high

uncertainty and re-compute the performance accuracy without

re-training the model. We remove top-10%, 20%, 30% predicted

uncertainty samples on each dataset and the results are shown

in Table 4. As expected, ruling out highly uncertain predictions

could improve the overall accuracy, verifying that our uncertainty

learning is of high quality and benefits selecting crucial samples.

5.6 Case study

In this section, we retrieve a series of intermediate and predicted

results to answer two questions. (Q1) Can CreST exactly capture

the context interactions and guide the spatiotemporal aggregation?

(Q2) How our uncertainty quantification benefit urbanmanagement

in this credible transportation system?

For Q1, we illustrate the predicted traffic volumes and context

embedding of SIP, in Figure 3(a)-(c). Overall, traffic volumes on

sunny days reveal more regular and active transitions than on

rainy days. And volumes of CBD experience a drop at 9:00 a.m.

on sunny days while they show an increase at the same period on

rainy days, this is because employees tend to put off their working

time during rainy days. These observations confirm the intuitions

of context interaction-induced dynamic correlations. Regarding

context embeddings, embeddings around CBDs are with smaller

values while embeddings at residential areas are with larger values,

delivering that volumes at residential areas are more sensitive to

context at that step. This is consistent with the fact that on rainy

days, officers must commute for working as usual while freelance

workers can individually plan their urban travelling.

For Q2, as accidents are highly uncertain and sporadic, we es-

pecially incorporate an accident dataset in NYC
5
to perform the

uncertainty-aware accident forecasting. The selected prediction un-

certainty and error maps are illustrated in Figure 3(d). We observe

that: i) The maps of uncertainty and errors share spatial similar-

ities in both Region 1 and 2. ii) For Region 1, Bronx District, the

combined context tripe (nightclubs, nights, rainy) contributes to

high uncertainty of accidents due to ambiguous unseen risk factors

and few existing context-accident correlations, corresponding to

data-side aleatoric andmodel-side epistemic uncertainty. In fact, the

inferred uncertainty, indicating prediction quality, can provide the

basis for transferring risk alerts to human inspection in emergency.

5.7 Hyperparameter study

The hyperparameters are five-fold here, i.e., the number and hidden

dimension of GCN layers, the number and hidden dimension of

LSTM layers, and the 𝛽,𝛾, _ to balance losses across context-target

highway, cosine similarity and UQ learning. The dynamic evolution

of performances is illustrated in Table 5 and Figure 4. Finally, we

can achieve the optimized hyperparameter settings in Sec. 5.2.1.

For efficiency, it takes an average of 1.0 seconds to do one round of

forecasting, sufficiently satisfying real-time credible forecasting.

6 CONCLUSION

In this paper, we shed light on coupling context factors with main

learning streams to realize credible traffic predictions. To internalize

context-wise interactions into inter-region correlations, we devise

a context-cross relational embedding and a context-target informa-

tion highway to achieve semantic context representation. We then

generate virtual region-wise proximity based on semantic contexts

for spatiotemporal aggregation. To decouple two uncertainties, we

attribute data-side uncertainty to context factors and take model

discrepancy as model-side uncertainty. Further, the residual is re-

gressed and enables real-time uncertainty inference, alleviating

model variation. Experiments demonstrate our CreST can boost

prediction performance and provide credibility.

5
https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes
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