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ABSTRACT

Spatiotemporal (ST) learning has become a crucial technique for

urban digitalization. Due to expansions and dynamics of cities,

current spatiotemporal models are inclined to suffer distribution

shifts between training and testing sets, leading to the OOD de-

limma of ST learning. However, very few studies focus on such

OOD problem of temporal regressions, let alone spatiotemporal

learning. Spatiotemporal data usually reveals segment-level het-

erogeneity within periodicity and complex spatial dependencies,

posing challenges to invariance extraction. In this paper, we find

that ST relations make sense for generalization and devise a causal

ST learning framework, CauSTG, which enables invariant relation

transferred toOOD scenarios. Specifically, we take temporal steps as

environments, and transform spatial-temporal relations into learn-

able parameters. To tackle heterogeneity in periodicity, we partition

temporal steps into sub-environments by identifying distinctive

trend patterns, enabling re-organized samples trained separately. To

extract invariance within ST observations, we propose a spatiotem-

poral consistency learner and a hierarchical invariance explorer

to jointly filter out stable relations. Our spatiotemporal learner

quantifies bi-directional spatial consistency and extracts disentan-

gled seasonal-trend patterns via relations reflected by trainable

parameters. Further, the hierarchical invariance explorer constructs

variation-based filter to achieve both local and global invariances.

Experiments on three OOD scenarios reveal that CauSTG can in-

crease at most 10.26% performance against best baselines, and visu-

alized invariant relations can well interpret the physical rationales.
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1 INTRODUCTION

Nowadays, many researches reveal the vulnerability of machine

learning-based models when they are exposed to data with dif-

ferent distributions, induing the necessity of inference on out-of-

distribution (OOD) instances [33, 38]. To this end, surge of literature

generalizes models to OOD scenarios via capturing invariances be-

tween features and targeted labels. Despite their prosperity, most of

them focus on addressing covariate shifts of images [22] and static

graphs [19, 33, 35], but few of them focus on spatiotemporal data

(ST data). The ST data is an emerging data structure with dynamic

observations in both spatial and temporal domains, where it can

accommodate diverse urban applications, such as traffics [29, 47],

smart grids [34] and air quality [8, 39].

In learning tasks, OOD scenarios refer to the existence of distri-

bution shifts between training and testing sets. Actually, compared

with static images or graphs, distributions of ST data are more

inclined to change over time due to increasing urban populations,

urban constructions and seasonal factors [5, 9]. Thus, covariate

distribution shift becomes a core obstacle to OOD generalization.

The early practice of ST learning transfers interval-level data into

image-like grids and formulates element-wise regression [43]. Re-

cent works devise dynamic graph-based architectures to capture

spatiotemporal relations, where each sensing point is seen as node

and the inter-sensor correlations are described as edges [2, 3, 40].

Even so, they still ignore the critical issue of covariate shift. On the

other hand, OOD learning usually assumes the existence of virtual

environments within observations and the distributions of variates

are varying across environments. To this end, invariant learning

captures the invariance across environments via minimizing pre-

diction error variances, namely IRM objective [1].

Following above studies, we classify OOD works into graph-

based and series-based. For graphs, the idea of invariant learning

has been adopted in both graph classification [4, 18, 19, 35] and

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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node classification [33] where local graph topology is considered as

environments. For series learning, AdaRNN first defines covariate

shifts in time series and exploits distribution characterization to

realize weighted prediction [9]. In addition, CoST [31] interprets

the disentangled seasonal knowledge and trend information from

causal perspective to enhance anti-noise robustness. Nevertheless,

given inherent dynamic and heterogeneous observations, existing

solutions are still incapable of dealing with OOD tasks on ST data.

Concretely, graph-based causal learning takes local topology as en-

vironments but fails to model the invariance of temporal evolution,

while series-based OOD learning cannot capture the invariance

with spatial dependencies. Moreover, IRM fails to interpret which

relation is exactly invariant for generalization, and traditional IRM

requires heavy modification to adapt regression tasks. Actually, in

causal spatiotemporal learning, temporal steps should be naturally

considered as environments, thus the essence of its OOD learning

is to find invariant spatiotemporal relations across temporal envi-

ronments. However, we argue that spatiotemporal OOD learning is

more challenging than classification tasks due to two critical issues.

Segment-level heterogeneity entangles temporal environ-

ments. In Fig. 1(a), each sequence segment in the periodicity reveals

various patterns, which induces diversity of node-wise correlation

patterns. Since we aim to capture invariant mappings among ob-

servations, such heterogeneity complicates the identification of

distinctive segments and exacerbates the sparsity of common in-

variance across steps. Thus, how to construct temporal environment
partition with segment heterogeneity is the first challenge.

IRM fails on heterogeneous spatiotemporal observations.

IRM learns invariant representations via minimizing deviated risks

from expected ones across diverse environments. Instead of using

logistic classification risks, IRM tends to bring in unfairness for

learning relations on different nodes due to heterogeneous obser-

vations. Therefore, accompany with lacked interpretation, how to
devise an interpretable invariance explorer that eliminates effects of
observation intensities becomes the second challenge.

Fortunately, we discover that quantified spatiotemporal rela-

tions can determine predictive observations. Generalizations on

classification usually capture invariant substructures or feature

representations [4, 18, 19, 35] for transferring, but in ST learning,

it is the amount of transitions between nodes that matters. As il-

lustrated in Fig. 1(b), ST-based invariant learning cares more about

consistent quantified relations across steps, where stable spatial

relations can be interpreted as consistent direction of temporal

evolution between nodes, while invariant temporal relation can

be seen as consistent seasonality and fluctuations. Therefore, we

argue that capturing invariant relations within ST data is of great

importance, and how to design a scalable spatial-temporal learner for
easily discovering quantified relational invariance remains an open

problem to the community.

In this paper, we propose a Causal Spatiotemporal Graph Learn-

ing framework (CauSTG) to discover invariance in spatiotemporal

data for OOD generalization. First, to tackle segment-level tempo-
ral heterogeneity, we partition periodicity into multiple segments

as sub-environments by progressively identifying distinctive seg-

ments. Then re-organized samples can be trained respectively to

capture both segment-level local and global invariance for avoiding

invariance sparsity. Second, to cooperatively remedy IRM failure, we

design a spatiotemporal consistency learner and a hierarchical in-

variance explorer to transform the spatial-temporal correlation into

learnable parameters, and capture the invariance that eliminates

heterogeneous risk effects on relation extraction. In particular, the

ST consistency learner is specifically designed for relational quan-

tification and easier invariance extraction. As motivated in Fig. 1(b),

we propose a bi-directional spatial learner by factorizing spatial

relations into negative and positive causal correlations, while devise

a decomposed temporal pattern extractor for seasonality and trend

abstraction, where all these relations are extracted by learnable pa-

rameters. Next, our hierarchical invariance explorer, which aims to

filter and ensemble stable relations, separately trains diverse mod-

els within and across sub-environments to encourage parameter

diversity. Our invariance explorer is instantiated with a proposed

MinVar Pooling module that highlights stable weights across en-

vironments, and averages selected stable weights across models.

We embed MinVar within and across environments, and design a

stability-based ensemble to hierarchically integrate segment-level

local invariance and global invariance. The fine-tuning is imposed

to adapt the parameters to new neural structures with unstable

relation removed, which facilitates better OOD generalization.

Contributions. (1) We investigate OOD generalization on spa-

tiotemporal data from an invariance perspective, which enables

causal spatial-temporal relations reflected by learnable parameters.

(2) To facilitate the invariance extraction, we partition periodic-

ity into temporal sub-environments to enable hierarchical invari-

ance preservation, and embed disentangled relations into trainable

parameters for stable relation filtering. We theoretically justify

our invariance explorer via deriving a smaller approximated error.

(3) We design three OOD scenarios on ST data for experiments.

Our CauSTG outperforms non-invariance learning baselines by

0.9%∼10.26% while beats invariant learning by 0.5%∼7.35%.

2 PRELIMINARIES

2.1 Problem formulation

Let G = {G1,G2, ...,G𝑡 , ...,G𝑇 } be a sequence of dynamic graphs

with 𝑇 steps. Each G𝑡 , is described as {V,𝑿𝑡 , E} where V =

{𝑣1, 𝑣2, ..., 𝑣𝑁 } is the node set,𝑿𝑡 ∈ R𝑁×𝐹 is the deterministic obser-

vation of G𝑡 , E describes the graph structure. The spatiotemporal

prediction model predicts following 𝜏 steps by exploiting previous𝜅

steps, i.e., 𝒚 = 𝑓 (𝒙) where (𝒙,𝒚) = (𝑿𝑡−𝜅:𝑡 ,𝑿𝑡+1:𝑡+𝜏 ). Given training

and testing data Ptrain, Ptest , OOD scenarios indicate that condi-

tional distributions are identical but marginal probability distribu-

tions change. In our task, given the training sequenceG𝑡 and testing
sequence G𝑠 , where PGt (x, y) ̸= PGs (x, y) but PGt (x|y) = PGs (x|y),

the goal of OOD generalization is to refine an invariant relation

mapping 𝑓 ∗ from G𝑡 , achieving risk minimization on test set G𝑠 ,

min R
(𝒙,𝒚)∈G𝑠

(𝒚; 𝑓 ∗(𝒙)) (1)

2.2 Theoretical guarantee

We first illustrate the failure of non-invariance learning on OOD

regression, and further dissect an invariant relation-aware solution

to alleviating the prediction deviation. In particular, we extend

assumptions in static graphs [33] to dynamic spatiotemporal graphs

to facilitate our analysis.
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(a) Traffic volumes during same two periods in SIP (b) Rationales of quantified spatiotemporal relations
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Figure 1: Subfigure (a) conveys two messages. (a.1) Spatiotemporal heterogeneity. Volumes in one region can be with large

dispersion across temporal steps while different nodes have heterogeneous intensities. (a.2) Segment-level heterogeneity. Each

period can be decomposed into different segments where each segment reveals a specific pattern. Subfigure (b) delivers that, if

two nodes are consistently with positive or negative evolution trends across steps, these two nodes are considered with a causal

relation that can be transferred to unseen environments.

Assumption 1 (Environment variation). Given sequential
spatiotemporal observations 𝑿1,𝑿2, ...,𝑿𝑁 , we suppose the distribu-
tions P(𝑿 ) are dependent on the virtual environments, and there are
total 𝐾 environments, i.e., E = {𝑒1, 𝑒2, ..., 𝑒𝐾 }. In other words, the
distribution shift is induced by the changes of virtual environments.

Assumption 2 (Invariance property). Even though the en-
vironments and covariate distributions are changing over time, there
must exist some invariant relations, which are induced by either pos-
itive or negative physically causal correlations, i.e., ∀(𝑖, 𝑗 ) ∈ |V|,
∃(𝑝, 𝑞), 𝑠 .𝑡 . P(𝑥𝑝 , 𝑥𝑞 |𝑒𝑖 ) = P(𝑥𝑝 , 𝑥𝑞 |𝑒 𝑗 ).

In the dynamic graph regression, given node 𝑣𝑖 , let degree of

𝑣𝑖 , and proportions of neighbors with causally invarint relations

to 𝑣𝑖 denote as 𝑑𝑖 , 𝑝𝑖 with 𝑑𝑖 > 1, 0 < 𝑝𝑖 < 1. Considering the co-

variate shifts, i.e., we train the model on samples following Gauss-

ian distribution G𝑠 ∼ 𝑁 (𝜇0, 𝜎0 |𝑒0) and test on samples following

G𝑡 ∼ 𝑁 (𝜇𝑞, 𝜎𝑞 |𝑒𝑞 ). We have the following two propositions.

Proposition 1. Let the graph-based ST learner 𝑓 trained without
considering invariant relations, then the upper bound of empirical risk

under environment 𝑒0 would be 𝜀0 ∼
2(1−𝑝𝑖 )𝑑𝑖𝜇0𝑤

𝑠
𝑖

1+𝑑𝑖
that is irreducible,

where𝑤𝑠
𝑖
is the weight for causal neighbor aggregation. When 𝑓 is

transferred to OOD test set 𝑁 (𝜇𝑞, 𝜎𝑞 |𝑒𝑞) satisfying 𝜇𝑞 = 𝑞𝜇0 where

𝑞 ∈ N+. The OOD risks are amplified to 𝜀𝑞 ∼ 2(1−𝑝𝑖 )𝑑𝑖𝑞𝜇0(𝜇𝑤±3𝜎𝑤𝑠 )

1+𝑑𝑖
,

where 𝜇𝑤 and 𝜎𝑤𝑠 are the expectation and variance of learnable𝑤𝑠 .

Remark. Proposition 1 manifests that the error bounds of non-

invariant learning are concerning with both observation expec-

tation and relation variance. Since 𝜇 tends to be overwhelmingly

larger than 𝜎 , the error upper bound will be approximately am-

plified by 𝑞 times when inferring on 𝑒𝑞 , leading to unacceptable

generalization performances. Therefore, we can conclude the failure

of non-invariance learning on OOD regressions.

Proposition 2. Let the ST learner 𝑓 ∗ be trained considering in-
variant relations, then the empirical risk under any environment
𝑒𝑖 (𝑖 = 1, ..., 𝐾 ) can asymptotically converge to 0 with𝑤𝑐

𝑖
= 1

𝑝𝑖
where

𝑤𝑐
𝑖
is the weight for causal part neighbor aggregations.

Remark. Proposition 2 delivers that capturing the invariant

neighboring relations with spurious neighborhood eliminated can

enable the independence between errors and the expectation of

original observations, thus providing guarantee on performances

of OOD scenarios. The complete proof of above two propositions

can be found in Sec. A.1 and A.2.

3 METHODS

3.1 Framework Overview

Inspired by above analysis, CauSTG is proposed to model invari-

ant relations in dynamic graphs across temporal environments.

Specifically, CauSTG consists of three modules, a temporal environ-

ment partition that divides the periodicity into different sequence

segments for hierarchical sample organization, the spatiotemporal

consistency learner for easy relation extraction, and the hierar-

chical invariance explorer that filters and ensembles hierarchical

local-global invariance. The overview of CauSTG is in Fig. 2.
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Figure 2: Framework overview of CauSTG. The 𝑾𝑖 𝑗 refers
to individual well-learned model weights within sub-

environments,𝑾∗ indicates ensembled model weights.

3.2 Temporal environment partition

Given the inherent time-varying property in ST data, we naturally

take time steps as the virtual environments, which essentially reflect

various contexts like weather and daily tidal regularity. However,

summarizing the step-level common invariance across all steps defi-

nitely leads to extreme sparsity of overall invariant relations. There-

fore, achieving the tradeoff of temporal partition is the premise of

spatiotemporal invariant learning.
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In this work, we explore the invariance across time steps by

further partitioning the periodicity into different segments where

the time steps in each segment can be formed as samples within

the same sub-environment. To facilitate data processing, we con-

sider the same segment index in different periods as the same

sub-environments so as to re-organize samples to separately train

different models according to temporal partitions. Given spatiotem-

poral observations and the expected 𝐾 sub-environments, we can

formalize our temporal environment partition by maximizing the

discrepancy distances between pair of segment partition,

max

∑︁
1⩽𝑝 ̸=𝑞⩽𝐾

𝑑
(
D𝑝 ,D𝑞

)
, 𝑠 .𝑡 .∀𝑖,∆1 < |D𝑖 |< ∆2;

𝐾∑︁
𝑖=1

|D𝑖 |= 𝑁 (2)

where D𝑝 ,D𝑞 are the 𝑝-th and 𝑞-th segments of partitioned ob-

servation, ∆1 and ∆2 are set as the minimal and maximal steps

in each segment to avoid the trivial solution. However, directly

optimizing Eq. 2 for 𝐾 partitions with ST data is NP-hard. Inspired

by the series-splitting solution in AdaRNN [9], we propose our

spatiotemporal temporal environment partition. Following [9], we

evenly construct 𝐷 parts for each period and each part will be the

minimal unit that cannot be further split. We then progressively

search 𝐾 in {4, 5, 6, 8} to obtain the globally optimized partition

points. The distinctions between our solution and [9] are two-fold.

First, we consider the spatial nodes in each step and take the spa-

tiotemporal observations as a whole to calculate the variations,

where D𝑝 ∈ R𝑁×𝑇𝑝 and 𝑇𝑝 is the number of time steps in segment

𝑝 . Second, to better identify invariant relations in each segment,

we modify the discrepancy metric into the absolute value of cosine

similarity, where higher absolute value of such similarity indicates

more consistent evolution direction encapsulating both positive

and negative correlations,

𝑑
(
𝐷𝑝 , 𝐷𝑞

)
=

1

𝑁

𝑁∑︁
𝑖=1

|cos(𝐷𝑝𝑖 , 𝐷𝑞𝑖 )| (3)

We designate the ∆1 as 2𝜏 steps, covering two times of training

sample periods, and ∆2 is
𝜏
2
steps in a periodicity, for easy imple-

mentation. Based on the greedy strategy, we can obtain the globally

optimized 𝐾 temporal sub-environments. Formally, the 𝑝-th seg-

ment in periodicity naturally contributes to 𝑝-th sub-environment,

which starts from step index 𝑝𝑠 and ends at 𝑝𝑒 , i.e., 𝑒𝑖 = {𝑝𝑖𝑠 , ..., 𝑝𝑖𝑒 }

and

𝐾∑
𝑖=1

|𝑝𝑖𝑒 − 𝑝𝑖𝑠 + 1| = 𝑇 . Therefore, we can hierarchically explore

both segment-aware local invariance and global invariance under

sub-environment partitions, and avoid the extreme sparse invariant

connections by preserving such multi-level invariance.

3.3 Spatiotemporal consistency learner

Our spatiotemporal consistency learner is designed with two in-

tuitions to adapt invariant relation extractions. (1) Multiple place-

holders of learnable relations and representation decoupling [31]

can encourage more opportunity to capture major common in-

variance across local steps. (2) Embedding relations into learnable

parameters on both spatial and temporal domains allows relational

quantification and enables invariance extraction via capturing pa-

rameter variations. We will elaborate our ST consistency learner

on respective spatial and temporal aspects.

3.3.1 Bi-directional spatial relation learner. In spatial domain, we

design a learning kernel that can better capture causal spatial corre-

lations according to two observations. First, in ST elements, spatial

transitions usually contribute to temporal evolution, thus the spatial

relations can be measured by the consistency of temporal evolution

directions. Second, spatial causal correlations can be attributed to

physical structures, e.g., human daily routines and local function-

ality, and they can be either positive or negative. Therefore, we

propose a spatial consistency measurement by considering tempo-

ral evolution and bi-directional relations, and further dissect how

this measurement derives a scalable spatial learning kernel. Specifi-

cally, this measurement characterizes the consistency of variation

directions in a node-wise manner, and normalizes the quantified

difference via the smoothed average of previous 𝜅 steps for stability.

Take steps from 𝑡 to 𝑡 +1 as an example, the spatial relation 𝑟𝑡 (𝑣𝑖 , 𝑣 𝑗 )

between node 𝑖 and 𝑗 is formulated by,

𝑟𝑡 (𝑣𝑖 , 𝑣𝑗 ) =

𝑥𝑡+1

𝑖
− 𝑥𝑡𝑖

𝑥𝑡+1

𝑗
− 𝑥𝑡𝑗

𝑥𝑡𝑗

𝑥𝑡𝑖
(4)

where 𝑥𝑡𝑖 is the averaged value of previous (𝑡 : 𝑡 −𝜅) steps, the sign

of 𝑟𝑡 (𝑣𝑖 , 𝑣 𝑗 ) indicates the correlated direction of two nodes while

the ratio value quantifies the intensity of discrepancy. Then we can

derive the predicted 𝑥𝑡+1

𝑖
with 𝑟𝑡 (𝑣𝑖 , 𝑣 𝑗 ) (simplified as 𝑟𝑡

𝑖 𝑗
) by,

𝑥𝑡+1

𝑖 = 𝑥𝑡𝑖 +

𝑟𝑡
𝑖 𝑗

(𝑥𝑡+1

𝑗
− 𝑥𝑡𝑗 )𝑥𝑡𝑖

𝑥𝑡𝑗
(5)

As observed, Eq. (5) provides an opportunity to achieve 𝑥𝑡+1

𝑖
by

regressing the relations. However, the second term in the numerator

of Eq. (5) is over-complex and seems intractable due to unavail-

ability of 𝑥𝑡+1

𝑗
. To enable scalable relation modeling and preserve

such relational complexity, we impose a polynomial kernel function

𝑔(𝑣𝑖 , 𝑣 𝑗 ) on 𝑥
𝑡
𝑗
and 𝑥𝑡

𝑖
to substitute the second term within numer-

ator for describing their directional relationship. Concretely, we

omit 𝑥𝑖 for the existence of first term, and formulate the quadratic

function as 𝑔(𝑣𝑖 , 𝑣 𝑗 ) = 𝑘0𝑥𝑖𝑥 𝑗 +𝑘1𝑥 𝑗
2

+𝑘2, where 𝑘0, 𝑘1 are learnable

coefficients and 𝑘2 is the bias for relational regression. Dividing

𝑔(𝑣𝑖 , 𝑣 𝑗 ) by 𝑥 𝑗 and merge with 𝑥𝑖 , we can exploit the simplified but

still scalable relation to obtain 𝑥𝑡+1

𝑖
,

𝑥𝑡+1

𝑖 = 𝑘0𝑥
𝑡
𝑖 + 𝑘1𝑥

𝑡
𝑗 +

𝑘2

𝑥𝑡𝑗
(6)

Actually, this aggregation function for 𝑣𝑖 enjoys the nice property

of capturing the bi-directions of both positive and negative correla-

tions. When positive correlation dominates, we can learn a larger

𝑘1 but smaller 𝑘2 (near zero), and vice versa. From the invariance

learning aspect, the stability of coefficient 𝑘1 can be interpreted as

a positively spatial consistency between 𝑥𝑖 and 𝑥 𝑗 , i.e., they have

the same variation direction at near steps, while a stable 𝑘2 can

interpret a negatively consistency where such consistency can be

reliably transferred for extrapolation. This operation ensures the

learning process to find the disentangled correlation patterns and

increases the possibility of capturing causally invariant relations.

Further, we take Eq. (6) into graph learning perspective, where the

liner term of 𝑥𝑖 can be viewed as the self loop while the latter two

terms can be seen as the linear combinations of its neighborhood

and corresponding inverses. Thus, the expectation of next step
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prediction for 𝑥𝑡+1

𝑖
can be written as,

𝐸(ℎ𝑡+1

𝑖 ) = 𝑘0𝑥𝑖 +

∑︁
𝑣𝑗 ∈ 𝑁 (𝑣𝑖 ),

𝑠 ∈ [1, |𝑁 (𝑣𝑖 ) |]

𝑘𝑠1𝑥 𝑗 +

𝑘𝑠2

𝑥 𝑗
(7)

In Eq. (7), 𝑁 (𝑣𝑖 ) denotes the neighbor set of 𝑣𝑖 , and 𝑘0, 𝑘𝑠1, 𝑘𝑠2 are

corresponding learnable weights to model relations. Such scalable

parameters extend binary adjacency to vector-level relation learn-

ing thus facilitating invariance extraction. For implementation, we

formulate our learning scheme into a new graph learning frame-

work, by transferring 𝑘1 and 𝑘2 into 𝐴0 and 𝐴it ,

h𝑡+1
= (A0X + AinX−1

)U (8)

where A0,Ain ∈ R𝑁×𝑁 and U ∈ R𝑑0×𝑑𝑚
are three learnable param-

eters for spatial learning,𝑑0 and𝑑𝑚 are input and output dimensions

of node-level features. A0 naturally encapsulates the self loop. We

denote the output feature maps and the learnable weight set as

𝑿𝑠 ∈ R𝑁×𝑑𝑚 and𝑾𝑠
= {A0,Ain,U}, respectively.

3.3.2 Decomposed temporal pattern extractor. Since causal learning
calls for disentangled representation to counteract interventions,

we design our temporal pattern extractor from two aspects, i.e.,

seasonal branch and trend branch [31] that respectively accommo-

date periodicity and evolution trends. To ensure independence and

better extract factor-level invariance, these two branches will be

learned independently by separated objectives and parameters.

Seasonal branch.We propose a multi-scale temporal convolu-

tion for pattern extractions where the sizes of convolution kernels

are derived by Fast Fourier Transformer (FFT) [25]. In particular,

we first exploit FFT to find top-𝑙 important frequency in the input

sequence, i.e., {𝑓1, 𝑓2, ..., 𝑓𝑙 } = arg max

𝑚𝑎𝑥−𝑙
FFT(𝑿 ) to identify the under-

lying seasonality. Then the inverses of frequency are considered

as the seasonality and can be exploited as kernel sizes of tempo-

ral convolutions. Thus, the temporal convolution kernel falls into

𝑤𝑘ts ∈ R
𝑑𝑐𝑘 ×1

, where 𝑑𝑐𝑘 = 1/𝑓𝑘 (𝑘 = 1, 2, ..., 𝑙 ). Then we can obtain

the seasonal representation of̂𝒀𝑠 ∈ R𝑁×𝜏 by,

̂𝒀 𝑡+1:𝑡+𝜏
𝑠 = TCN(𝑿𝑠 ;𝑤1

ts, ...,𝑤
𝑙
ts) (9)

where𝑤ts can be viewed as periodicity-based amplitude for period-

ical pattern extraction. To capture the refined seasonal information,

we exploit the extracted {𝑑𝑐𝑘 } to recover the seasonal information

from frequency domain to temporal domain ˜𝒀𝑠 , and minimize the

difference between the predicted seasonal sequencê𝒀𝑠 and the re-

constructed sequence ˜𝒀𝑠 from the derived kernels. The seasonal

learning objective can be denoted as,

𝐿𝑜𝑠𝑠se = MAPE(̂𝒀𝑠 ,˜𝒀𝑠 ) (10)

Noted that the sizes of kernels are calculated once and share across

the same segment index in each period, and the reconstructed

parameters will not count into our pattern extractor.

Trend branch. To encapsulate the trend learning capacity, we

first impose learnable transformations𝑤tr ∈ R𝑑𝑚×𝜏 on the input

sequence and devise two trend-preserved objectives. Specifically,

the result 𝑌tr ∈ R𝑁×𝜏 after transformation on original sequence is,

𝑌tr = 𝑿𝑠 ∗𝑤tr (11)

After that, we calculate the first-order difference to characterize the

evolving trend pattern, which is derived by ∆𝑦𝑡 (𝑖) = 𝑦𝑡+1

𝑖
−𝑦𝑡

𝑖
. And

then we devise two objectives to jointly preserve the sequence con-

sistency via minimizing the values of cosine similarities respectively

between targeted sequences, and their first-order differences,

𝐿𝑜𝑠𝑠tr = min cos(𝒀 ,̂𝒀tr ) + cos(∆𝒀 𝑡tr ,∆𝒀̂
𝑡
tr ) (12)

Therefore, parameters 𝑤tr account for capturing evolution trend

transformation from inputs to outputs. To ensure the independence

between these two representations, we impose an independence

regularization through maximizing the cosine similarity between

the two perspective representations, i.e., Reg𝑖𝑛 = −min cos(̂𝒀𝑠 , 𝒀̂tr ).
Overall objective of temporal pattern extractor. We can

obtain overall prediction representation by element-wisely fuse

these two aspects, i.e., 𝒀̂ = 𝒀̂tr ⊕ 𝒀̂𝑠 , and achieve the final objective,

𝐿𝑜𝑠𝑠 = MAPE(̂𝒀 , 𝒀 ) + 𝜆0𝐿𝑜𝑠𝑠se + 𝜆1𝐿𝑜𝑠𝑠tr + 𝜆2Regin (13)

where 𝜆0, 𝜆1, 𝜆2 are hyperparameters. Therefore, we can denote the

set of temporal learning weightW𝑡
= {𝑤ts,𝑤tr }.

Finally, the combined parameters of our spatiotemporal consis-

tency learner can be written as W = Concat{W𝑠 ,W𝑡 } ∈ R𝑃×𝑄
where these two weight sets capture the relations within input

observations and relations between input and output. 𝑃 and 𝑄 are

two virtual dimensions of the learnable weights to facilitate the

description of our model.

3.4 Hierarchical invariance explorer

Previous invariant learning works usually minimize the variance

of risks derived from different environments [1, 33, 35], however,

we argue that these solutions are not suitable for our regression

tasks. The reason is that risks of classification are logistically homo-

geneous while the risks of ST regression are heterogeneous across

topology and temporal environments. Thus, minimizing the varia-

tion of different risks must be biased. To this end, a more intuitive

way of capturing invariance is to filter out stable trainable weights,

which reflects invariant mapping relations, across environments.

Instead of imposing an IRM objective, we propose our hierarchi-

cal invariance explorer to explicitly identify stable spatiotemporal

relations, which is elaborated in Fig. 3. Specifically, our invariance

explorer is a training framemwork with a novel weight selection

strategy. By cooperatively working with another two modules, our

hierarchical invariance explorer generates diverse models within

and across sub-environments, thus enabling parameter diversity

and hierarchically capturing both local and global invariances. The

hierarchical design of capturing two-level invariances is devised to

avoid extreme sparsity of global invariant connections.

Concretely, with partitioned sub-environments, the generated

samples and trained models are both hierarchically. We first orga-

nize different sample groupswithin each partitioned sub-environment

and train a series of models for each sample group and environ-

ment. We denote weights in each well-trained models as Θ =

{{W11,....,W1𝑚}, ..., {W𝐾1,...,W𝐾𝑚}}, where W𝑖 𝑗 represents the 𝑗-

th grouped model within 𝑖-th sub-environment. Our invariance ex-

plorer receives well-learned model weights from differernt groups.

To capture invariance with spatiotemporal observations, we pro-

pose a novel stable weight selection strategy namedMinVar pooling.
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Our MinVar pooling consists of two stages, a minimal variance-

based stability filter to highlight relatively stable weights, and an

average pooling to ensemble models for OOD inference.

Local invariance. Given the 𝑘-th sub-environment and the en-

vironment specific weight Θ(𝑘), we first filter out the interpretable

stable weights to achieve the locally invariant spatiotemporal cor-

relations in this sub-environment. Denote𝑤𝑘 𝑗 (𝑝, 𝑞) as the element

indexed by (𝑝, 𝑞) in learned model weight W𝑘 𝑗 , we can measure

the local stability by computing the element-wise variance, and

then highlight the most 𝑟% stable weight indexes as invariant ST

relations. Formally, the indexes of invariant weights (𝑝, 𝑞) can be

derived by,

(𝑝, 𝑞) = arg min

Min-r%

( Var

1⩽𝑗⩽𝑚
({𝑤𝑘 𝑗 (𝑝, 𝑞)})) (14)

where 1 ⩽ 𝑝 ⩽ 𝑃, 1 ⩽ 𝑞 ⩽ 𝑄 . Then only the selected entries will

participate in following stage while other entries will be eliminated

due to their unstability. After that, the second stage of average

pooling calculates the average of weights at selected entries to

obtain the local invarianceW∗
𝑘
,

𝑤∗
𝑘

(𝑝, 𝑞) = Avg

1⩽𝑗⩽𝑚
({𝑤𝑘 𝑗 (𝑝, 𝑞)}) (15)

𝑤∗
𝑘

(𝑝, 𝑞) is the element inW∗
𝑘
. Similarly, we achieve a series of local

invariant modelsW∗
𝑘

(𝑘 = 1, 2, ..., 𝐾 ) for each sub-environment.

Global invariance. To achieve the global invariance, we impose

our MinVar Pooling on all local invariant models and obtain the

overall invariance modelW∗ by elimination and ensemble. With

both local invariance W∗
𝑘
and overall invariance W∗, the follow-

ing question becomes into how to exploit the sub-environment

models to achieve an ensembled global OOD model by fusing lo-

cal and overall invariance. To resolve this challenge, we devise

a stability-based ensemble to integrate local and global invari-

ance via calculating the element-wise discrepancy. To be specific,

the underlying discrepancy is traced back to its upper-level mod-

els. For instance, the potential stability of 𝑘-th local invariance

𝑤∗
𝑘

(𝑝, 𝑞) is referred to model variations within sub-environment

𝑘 , i.e., var

1⩽𝑗⩽𝑚
({𝑤𝑘 𝑗 (𝑝, 𝑞)}), while the stability of global invariance

𝑤∗(𝑝, 𝑞) is referred to the model variations across different sub-

environment invariances, i.e., var

1⩽𝑘⩽𝐾
𝑤∗
𝑘

(𝑝, 𝑞). As the variance can

be the inverse of stability, we take the inverse proportion of their

stability (empirical variances) as ensemble coefficients. Formally,

the ensembled global invariant ST learning weights for 𝑘-th sub-

environment W̃∗
𝑘

= {𝑤∗(𝑝, 𝑞)} can be achieved by,

𝑤∗(𝑝, 𝑞) = 𝛾
(𝑝,𝑞)

𝑤∗
𝑘

(𝑝, 𝑞) + (1 − 𝛾
(𝑝,𝑞)

)𝑤∗(𝑝, 𝑞)

𝛾
(𝑝,𝑞)

=

var

1⩽𝑘⩽𝐾
𝑤∗
𝑘

(𝑝, 𝑞)

var

1⩽𝑗⩽𝑚
({𝑤𝑘 𝑗 (𝑝, 𝑞)}) + var

1⩽𝑘⩽𝐾
𝑤∗
𝑘

(𝑝, 𝑞)

(16)

Therefore, all positions of non-zero parameters in W̃∗
𝑘
constitute

the invariant relations in training setG𝑡 , and we impose a fine-tune

strategy on it to update W̃∗
𝑘
[26] and achieve the final 𝑓 ∗, where

the new W̃∗
𝑘
can better adapt to new pruned neural architectures.

Our hierarchical invariance explorer can be deemed as a novel

training strategy with sample re-organization and model fusion.

Given above, our global invariance model W̃∗
𝑘
can preserve two-

level parameter-level invariances and their fusion coefficients.When

an OOD sample arrives, we first assign it to corresponding environ-

ment and exploit Eq. (16) to obtain the predictions.

Sub-env 1 | 𝒆𝟏

Sub-env K | 𝒆𝑲

……

W11

W12
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Figure 3: Overview of hierarchical invariance explorer

4 EXPERIMENT

4.1 Dataset

We employ four real-world spatiotemporal datasets across three

domains. Traffic. (1) SIP: Camera surveillance capturing traffic vol-

umes in Suzhou Industry Park (SIP), (2) Metr-LA: Traffic attributes

detected by highway loop detectors of Los Angeles, USA. Climate.

(3) KnowAir: PM2.5 concentrations, covering 184 main cities of

China [28]. Smart grid. (4) Electricity: Hourly urban electricity

consumption of 321 clients from 2012 to 2014 [36]. The dataset

descriptions are illustrated in the Appendix.

4.2 Baseline

We exploit eight prevalent baselines for spatiotemporal learning,

and incorporate IRM with two best baselines to compare our so-

lution against IRM. Non-invariance learning: (1) STGCN: A

graph-based spatiotemporal framework with a sandwich structure

by 1D temporal convolution [40]. (2) MTGNN: A graph-based

multi-variate time series learning without defining explicit graph

topology [36]. (3) Graph WaveNet (GWN): A graph-based traffic

prediction model that integrates TCNs and GCNs [37]. (4) DCRNN:

A diffusion convolutional recurrent neural network, which com-

bines diffusion graph convolutions with RNNs [20]. (5) ASTGNN:

An attention-based spatiotemporal network for capturing dynamic

ST correlations [11]. (6) AdaRNN: An adaptive series learning

with flexible distribution matching, which first tackles temporal co-

variate shifts [9]
1
. (7) ST-SSL: A self-supervised learning tailored

for spatiotemporal framework [14]. (8) STDEN: A physics-guided

SOTA solution to spatiotemporal learning [15]. Invariant learn-

ing: (9) MTGNN+IRM:We integrate MTGNN [36] with IRM [1] by

minimizing variance of risks across sub-environments, inheriting

the idea from [33, 35]. (10) GWN-IRM: Similar to (9), we integrate

GWN [37] with IRM.

4.3 Implementation protocols

Following common settings in ST learnings [3, 11, 36], we imple-

ment 12-step ahead prediction by exploiting previous 12 steps. Our

1
https://github.com/jindongwang/transferlearning/tree/master/code/deep/adarnn
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Table 1: Periodicity and sub-environment partition

Dataset SIP Metr-LA KnowAir Electricity

Time steps 25,920 34,272 11,688 26,304

Interval 5 min 5 min 3 h 15 min

Periodicity daily daily weekly daily

Periodical steps 288 288 56 96

Env Partition 𝐾 6 6 6 6

temporal environment partition divides time steps within one peri-

odicity into several segments where each sub-environment contains

the even number of samples. The sub-environment partition 𝐾 and

intervals of periodicity are illustrated in Table 1. For training/val-

idation/test set partition, we divide the whole sets into 2:1:1 for

training, validation and testing. We implement our CauSTG based

on GraphWavenet and do not pre-define any graph structure before

model training. We adopt Adam [17] as the optimizer with learning

rate of 1e-4. Mean Absolute Percentage Error (MAPE) is considered

as the main evaluation metric, i.e., MAPE =
|𝑦−𝑦 |
𝑦 .

Given the problem of OOD inference, we consider three OOD

scenarios as below to validate our CauSTG. The following settings

are guaranteed across all baselines for fairness.

(1) Temporal covariate shift. To verify the performances on

temporal covariate shifts, we construct training set by selecting𝐾/2

sub-environments for training {𝑒𝑠1
, ..., 𝑒𝑠𝐾/2

} while let half samples

within sub-environments that have not appeared in training sets as

validation and testing sets. With our partition principle on distinc-

tions, this setting naturally forms different distributions between

training and testing sets.

(2) Inductive setting. To explore the inductive extrapolation

capacity on unseen samples, i.e., adaptation of new nodes in cities,

we mask 5% of total nodes to imitate their non-involvements in

training stage and involve them during testing. For implementation,

we correspondingly find the most proximal node for each masked

node, and copy their node-specific adjacency to new nodes, thus

constructing an extended relational spatial adjacency for testing.We

can leverage the power of our ST consistency learner to implement

extrapolation. The prediction errors can be evaluated.

(3) Injective artificial noise.We explore the noise sensitivity

via injecting Gaussian noise, which verifies whether our model can

still capture the invariant relations under noisy data. The injected

noise follows𝑁 (𝜇0, 𝜎0), where 𝜇0 and 𝜎0 are the mean and variance

of observations within corresponding sub-environment. We defer

the detailed influences of noise intensity in Section 4.6.

4.4 Comparison results

Comparison results can be found in Table 2. Generally, regardless

of IRM and CauSTG, learning with invariance can exactly improve

OOD predictions. For IRM, we discover the less significance on tem-

poral shifts for MTGNN+IRM, where we speculate the reason lies in

MTGNN lacking the scalable relation designs for invariance extrac-

tion. In contrast, our CauSTG exactly competes IRM-based baselines

and consistently achieves better results on almost all OOD scenar-

ios, outperforming non-invariance baselines by approximately 1%

to 10% while invariance ones by 0.5% to 7.35%. Specifically, by ob-

serving performances on different tasks across all baselines, we find

that the task of new node involvement is much harder than tempo-

rally covariate shifts, correspondingly our CauSTG achieves most

significant improvement. We especially attribute such superiority

to two issues compared with other solutions, 1) the cooperative

works between consistency learner and invariance explorer ex-

actly identifies the causally spatial relations and temporal variation

trends, which help better extrapolate on unseen data, 2) the copy

of node neighborhood can empower the learned consistency to

make sense on predicting unseen nodes. Moreover, our solution

also preserves satisfactory performances as the disentangled and

scalable relation learning can separate the factors thus be resilient

to noise injections.

In addition, it is worth noting that our model reveals better per-

formance in Electricity. The underlying reason is that our scalable bi-

directional spatial learning is more superior on node-level datasets

without explicit graph structures. For Electricity, the users do not

have explicit neighborhood but tend to reveal similar consumption

patterns with consistent variation trends. Thus, it is opportunely

suitable to model such user-level similarity (i.e., spatial consistency)

and evolutional trend consistency by our ST consistency learner.

In summary, our CauSTG is with superiority in three aspects, 1)

more adaptation capacity on inductive settings (new nodes) due to

extracted invariant relation, 2) more friendly to datasets without

pre-defined adjacencies due to scalable relation learning, 3) resilient

to injective noise with its hierarchical invariance explorer.

4.5 Ablation study

To uncover the significance of eachmodule to the success of CauSTG,

we perform an ablation study on temporal covariate shifts via re-

moving each module or replacing it with a vanilla one. The ablated

variants are as follows. (1) CauSTG-Adj: Replace bi-directional

spatial relation learning with binary adjacent matrix constructed by

geographical distances or node behavior similarity.
2
(2) CauSTG-

GRU: Replace the disentangled temporal learning with GRU. (3)

CauSTG-NoHier: Skip local invariance and directly obtain global

invariance across all steps. The detailed results are in Table 6. As

observed, the hierarchical invariance explorer plays the most signif-

icant role in OOD learning as the sparse connections of invariance

across all steps are unacceptable. Concretely, removing the inverse

of𝑿 leads to the loss of modeling negatively causal correlations thus

deteriorating performances. Replacing temporal learning with only

sequential perspective GRU becomes less scalable for invariance

learning, thus inferior to seasonal-trend ones. Remarkably, these

results can match with baseline performances on similar settings,

which further verifies better designs of our modules.

4.6 Model hyperparameter analysis

We take temporal covariate shift to evaluate the impacts of hyper-

parameter on model performances. We report averaged MAPE of

SIP and KnowAir on testing set in Fig. 4 while results of another

two sets are in the Sec. B.4.

(1) Number of sub-environment partition 𝐾 . More sub en-

vironments can lead to finer granularity of temporal partitions

thus more stable relations can be captured, but more environments

2
Adjacencies of SIP, Metr-LA and KnowAir are established by geographical distance

while graph of Electricity is constructed by cosine similarity between users.
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Table 2: Performance comparisons on OOD scenarios against baselines. The overall best results are bold, results of best non-

invariance and invariant learning are respectively marked with underline and *.

SIP Metr-LA KnowAir Electricity

Temporal

shift

New

nodes

Artifical

noise

Temporal

shift

New

nodes

Artifical

noise

Temporal

shift

New

nodes

Artifical

noise

Temporal

shift

New

nodes

Artifical

noise

STGCN 22.75% 26.7key 2% 23.36% 12.62% 15.13% 13.53% 31.71% 42.87% 33.94% 2.65% 4.93% 3.93%

MTGNN 20.09% 23.74% 20.70% 10.05% 12.56% 11.25% 24.06% 36.22% 29.59% 2.12% 4.41% 3.65%

GWN 20.13% 23.65% 20.84% 10.01% 12.52% 11.17% 24.13% 36.21% 29.53% 2.08% 4.34% 3.51%

DCRNN 21.17% 24.64% 21.88% 10.50% 13.01% 11.41% 25.17% 36.23% 30.43% 2.31% 4.68% 3.83%

ASTGNN 22.31% 25.87% 22.92% 10.04% 12.55% 10.99% 26.31% 37.43% 31.27% 2.33% 4.71% 3.79%

AdaRNN 21.22% 24.78% 22.79% 10.14% 13.08% 11.58% 24.60% 36.47% 30.76% 2.10% 4.45% 3.88%

ST-SSL 21.75% 23.43% 22.44% 10.61% 12.42% 12.86% 24.01% 36.07% 30.03% 2.15% 4.04% 3.56%

STDEN 21.88% 24.67% 21.70% 11.03% 12.83% 12.36% 25.13% 36.97% 30.65% 2.23% 4.88% 3.97%

MTGNN+IRM 20.21% 23.86% 20.52%* 10.02% 12.53% 11.03% 24.03% 35.14% 29.46% 2.05% 4.21% 3.28%*

GWN+IRM 20.01%* 23.56%* 20.64% 9.94%* 12.45%* 10.95%* 24.01%* 35.12%* 29.34%* 2.04%* 4.13%* 3.33%

CauSTG 19.91% 23.03% 20.35% 9.75% 12.34% 10.64% 23.63% 34.32% 28.95% 1.89% 3.89% 3.15%

Beyond non-inv 0.90% 1.71% 1.69% 2.60% 0.64% 3.18% 1.58% 4.85% 1.96% 9.13% 3.71% 10.26%

Beyond inv 0.50% 2.25% 0.83% 1.91% 0.88% 2.83% 1.58% 2.28% 1.33% 7.35% 5.81% 3.96%

Table 3: Ablation study

Variants SIP Metr-LA KnowAir Electricity

CauSTG-Adj 21.10% 11.60% 26.14% 2.24%

CauSTG-GRU 21.62% 10.55% 25.17% 2.30%

CauSTG-NoHier 23.26% 13.42% 26.68% 2.84%

CauSTG 19.91% 9.75% 23.63% 1.89%

Figure 4: Hyperparameter analysis on SIP and KnowAir

will also introduce higher spatial and temporal complexity in the

training process. We thus adjust 𝐾 ∈ {4, 5, 6, 8} to find out the eclec-
tic partition number. We find the performances are stable across

partition numbers and choose 𝐾 = 6 as an eclectic one for all sets.

(2) Invariance filtering threshold 𝑟%. We let 𝑟% vary from

{45%, 50%, 55% 60%} to obtain a well-fit threshold. There is the trade-
off between reliable but sparse stability with smaller 𝑟 and the less

reliable but richer relation connections with larger 𝑟 . We find 𝑟% =

60%, 55%, 55%, 50% for SIP, Metr-LA, KnowAir and Electricity, which

means that unstable relations accounting for 40%, 45%, 45%, 50% of

total parameters are removed for invariant learning.

(3) Number of TCN kernels 𝑙 . We enable 𝑙 varying from

{3, 5, 6, 8} for each dataset to get suitable ones for temporal pattern

extractions. In fact, we arrive 𝑙 = 5 for SIP and Metr-LA while 𝑙 = 6

for KnowAir and Electricity.

(4) Intensity of injective noise 𝛿 . We inject artificial noise

into training samples of SIP and KnowAir, where the noise is set

as 𝛿 = {0.2𝜇0, 0.5𝜇0, 𝜇0, 2𝜇0}, 𝜇0 is the average of observations of

corresponding environment. As observed, ourmodel can be resilient

to noise even the intensity rising to 𝜇0 and 2𝜇0, where the reason

lies in the superiority of disentangled relation and trend extraction.

4.7 Case study

In this subsection, we visualize model weights within three tem-

poral environments on Metr-LA in Fig. 5, including both spatial

relations and temporal patterns.

The non-zero entries in A0 describe stable positive correlations

between node pairs. In particular, we observe that Nodes 51 and 52

(highlighted with red circles) reveal relatively consistent relations

across 3 environments, especially in the morning and evening. We

look up to real-world maps and find that these two nodes lie in high-

way around Universal Studios Hollywood, which inherently share

an up-downstream relation with physically positive correlation and

further confirm the rationale of our CauSTG.

In temporal patterns, we clip the matrix 𝑤tr into a sub weight

sized by 15×12, and discover that trend patterns𝑤tr are more easier

to reach consistency across sub-environments while the intensity

of seasonal patterns 𝑤ts usually cannot reach a consensus. This

reason can be that the convolution kernels in𝑤ts , which determine

the intensity values, are distinctive across environments, but trend

patterns usually share across environments. This observation can

also be verified in Fig. 1 (a). Therefore, in predictions, the value

intensity (i.e.,𝑤ts) is more dependent on local invariance while the

trend (i.e.,𝑤tr ) can be attributed to invariance across environments.
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Figure 5: Visualization of invariant relations

5 RELATEDWORK

Spatiotemporal learning addresses challenging tasks such as

traffic prediction [11, 24], precipitation forecasting [13, 16] and real

estate value estimation [23, 27]. Recent spatiotemporal learning

usually falls into deep learning-based solutions. At an early stage,

the urban areas are partitioned into grids and CNN architectures are

exploited to capture spatial dependencies [43]. Further, spatiotem-

poral data is organized into graph structure for non-Euclidean

modeling where each node possesses location-specific observation

and edges carry node-wise relations. Followed up, multi-view graph

convolution [6, 10, 12], inner product-based adaptive graph learn-

ing [36] are proposed to boost the performances. Besides, temporal

learning is also introduced with GRU [3, 21] or TCN [2, 40]. De-

spite prosperity, the city expansions and urban constructions raise

covariate shift concern on spatiotemporal observation. To this end,

TrafficStream devises to periodically update the training models

by re-sampling and re-weighting importance to realize continuous

learning and confront distribution shifts [5]. However, this work

still suffers the challenge of how to tradeoff historical and new

knowledge. Technically, continuous learning models require peri-

odically rolling training thus failing to capture the invariancewithin

changing environments. Thus, exploring OOD generalization of ST

models is of great need but hardly explored.

Time-series learning with covariate shift. Traditional se-

quential regressions usually adopt auto-regressive based solution

such as ARIMA [44]. With the success of deep learning, variants

of RNNs, such as LSTM [41] and GRU [7] with gated modules are

proposed to avoid the gradient vanishment. Also, the powerful

language model, Transformer, is introduced to enable longer hori-

zon predictions of structured time series [32, 34]. More recently,

Du, et, al [9] point out the covariate shift issue in time series, and

correspondingly propose the AdaRNN to enable adaptive aligned

regression with modules of distribution characterization and match-

ing. Follow-up works transfer the series from temporal domain into

frequency to realize multi-periodicity detection [30], and empower

more robust [45] and longer-term forecasting [32]. Specifically,

CoST decomposes seasonality-trend information to obtain the dis-

entangled representations, which theoretically justifies its robust-

ness via causal perspective [31]. Even though, these works all focus

on series-level without introducing spatial dependencies. In fact,

spatial correlations in ST learning can bring in further challenges

due to the non-independence identical distribution (non-i.i.d.) issue,

which is inherently not considered in the traditional series learning.

OOD learning is usually tackled by causal theory, and these

solutions can be classified into counterfactual-based and invari-

ant learning-based. Counterfactual prediction incorporates virtual

but rational samples derived by causal inference, which expects

maximal generalization on unseen domains by increasing sample

diversity [42]. On graphs, these solutions take neighbor pairs as

context and global graph structural properties as treatment, to real-

ize rationale discovery [46]. However, such solution is inherently

a kind of data augmentation and fails to refine intrinsic data regu-

larity. For invariant learning, it usually assumes the existence of

virtual environments and the distributions of covariates (i.e., in-

put 𝑥) can be varying across different environments. Specifically,

it leverages IRM [1] to capture invariance across environments.

This idea has been adapted to graph-level classification tasks by

proposing DIR [35], OOD-GNN [18], and MoleOOD [38] via finding

an invariant but sufficient substructure on graphs. However, these

studies are built on static graphs that cannot well fit in node-level

dynamic regressions. Very recently, EERM [33] overcomes the non-

i.d.d. issue on node-level learning and learns the invariance via

maximizing the risk variances from multiple environments. Even

though, all these works cannot simultaneously accommodate spa-

tial correlation and temporal dependence from causal perspective,

which respectively faced with non-i.d.d. issue and heterogeneous

temporal environments.

6 CONCLUSION

In this paper, we propose a causal spatiotemporal learning frame-

work, CauSTG, to tackle the covariate shift in ST learning. CauSTG

converts invariant representation learning into capturing stable

trainable weights. Specifically, we take temporal steps as environ-

ments and partition temporal environments by identifying dis-

tinctive segments, enabling hierarchical invariance extraction. To

facilitate quantified invariance extraction, we modify traditional ST

model into a spatiotemporal consistency learner, which empowers

bi-directional spatial relation and decomposed seasonality-trend

knowledge to be well-captured. Finally, a novel training scheme,

the hierarchical invariance explorer, is devised to filter and ensem-

ble the stable weights via measuring weight discrepancy across

sub-environments, capturing both segment-level local invariance

and global invariance. Experimental results on three OOD scenarios

validate the performance superiority and exhibit intrinsic interpre-

tation of our OOD solutions. For future work, we will work on

scalable training strategies for iteratively refining the stable models

and explore model adaptations on different OOD scenarios.
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A PROOF FOR THEORETICAL ANALYSIS

In this section, we inherit the assumptions and notations from

Sec. 2.2.

A.1 Proof of Proposition 1

Prop 1. Failure of non-invariance learning onOOD regression.

We consider one-time GNN aggregation of its neighbors, from 𝑇 -

step to achieve the expected regression prediction of 𝑇 + 1-step.

Based on above assumptions, for node 𝑣𝑖 , we take N𝑐 (𝑣𝑖 ) as the

causally correlated neighbor set of 𝑣𝑖 whileN𝑠 (𝑣𝑖 ) denotes the set of
non-causally correlated neighbors. Given degree 𝑑𝑖 , the traditional

one-time aggregation for 𝑣𝑖 with all nodes can be formulated by

decomposing the causal and non-causal parts,

𝐸(ℎ𝑇𝑖 ) =

𝑥𝑇
𝑖

+

∑
𝑐 𝑗 ∈N𝑐 (𝑣𝑖 )

𝑤𝑐
𝑖 𝑗
𝑥𝑇𝑐 𝑗 +

∑
𝑠 𝑗 ∈N𝑠 (𝑣𝑖 )

𝑤𝑠
𝑖 𝑗
𝑥𝑇𝑠 𝑗

1 + 𝑑𝑖
(17)

where 𝑐 𝑗 and 𝑠 𝑗 are the subscripts of two neighborhood sets, and𝑤
𝑐
𝑖 𝑗

and𝑤𝑠
𝑖 𝑗
are learnable weights for causal parts and non-causal parts

(spurious correlations). By calculating the difference between the

aggregated expectation 𝐸(ℎ𝑇
𝑖

) and groundtruth 𝑥𝑇+1

𝑖
, we can derive

the prediction error 𝜀0 after one-time aggregation by neglecting

the non-linear activations,

𝜀0 = | |𝐸(ℎ𝑇𝑖 ) − 𝑥𝑇 +1

𝑖 | |

= | |
𝑥𝑇
𝑖

+

∑
𝑐 𝑗 ∈N𝑐 (𝑣𝑖 )

𝑤𝑐
𝑖 𝑗
𝑥𝑇𝑐 𝑗 +

∑
𝑠 𝑗 ∈N𝑠 (𝑣𝑖 )

𝑤𝑠
𝑖 𝑗
𝑥𝑇𝑠 𝑗 − (1 + 𝑑𝑖 )𝑥

𝑇 +1

𝑖

1 + 𝑑𝑖
| |

(18)

Assume that observations on both current step 𝑥𝑇
𝑖
and next

step 𝑥𝑇+1

𝑖
follow the same Gaussian distribution 𝑁 (𝜇0, 𝜎0), and

𝑝𝑖 =
| |N𝑐 (𝑣𝑖 ) | |
| |N(𝑣𝑖 ) | | accounts for the proportion of causal neighbors. To

facilitate the expression, we let 𝜇𝑡
0
, 𝜇𝑡+1

0
denote the expectation of

observation 𝑥𝑖 at 𝑡 and 𝑡 + 1, and 𝜇𝑐
0
, 𝜇𝑠

0
represent the expectation of

the expected observation of its causal neighborhood and non-causal

(spurious) neighborhood. The initial error of Eq. 18 can be modified

by,

𝜀0 =

𝜇𝑡
0

+ 𝑝𝑖𝑑𝑖𝜇
𝑐
0
𝑤𝑐
𝑖

+ (1 − 𝑝𝑖 )𝑑𝑖𝜇𝑠
0
𝑤𝑠
𝑖
− (1 + 𝑑𝑖 )𝜇

𝑡+1

0

1 + 𝑑𝑖
(19)

where we ignore the sign for absolute value, and assume that the

expectation and learnable weights all preserve positive.

Since the non-causal based learning is formulated by regression

function of 𝑦𝑖 = 𝑤𝑐
𝑖
𝑥𝑐 +𝑤𝑠

𝑖
𝑥𝑠 , the prediction residual res𝑖 will be

derived by res𝑖 = 𝑦𝑖−𝑤𝑐𝑖 𝑥𝑐 = 𝑤𝑠
𝑖
𝑥𝑠 . Therefore, we can substitute the

difference between aggregated causal parts and groundtruth with

aggregated non-causal part, and obtain the following equations,

𝜀0 =

𝜇𝑡
0

+ 𝑝𝑖𝑑𝑖𝜇
𝑐
0
𝑤𝑐
𝑖
− (1 + 𝑑𝑖 )𝜇

𝑡+1

0
+ (1 − 𝑝𝑖 )𝑑𝑖𝜇𝑠

0
𝑤𝑠
𝑖

1 + 𝑑𝑖

=

2(1 − 𝑝𝑖 )𝑑𝑖𝜇𝑠
0
𝑤𝑠
𝑖

1 + 𝑑𝑖

(20)

With Eq. 20, we can arrive that the derived error is not reducible as

𝑤𝑐
𝑖
̸= 0. Then, we can further disentangle the influence factors of

this error. As causal parts are defined on the stable relations while

spurious parts are defined on highly variant correlations across

distribution (environments), we can make the assumption of the

distributions of corresponding learnable weights by,

𝑤𝑐
𝑖
∼ 𝑁 (𝜇𝑤 , 𝜎𝑤𝑐 ), 𝑤𝑠

𝑖
∼ 𝑁 (𝜇𝑤 , 𝜎𝑤𝑠 )

𝑠 .𝑡 . 𝜎𝑤𝑠 ≫ 𝜎𝑤𝑐
(21)

Given that if one random variable follows Gaussian distribution,

then 99.73% of the samples fall into the ranges between [𝜇 − 3𝜎, 𝜇 +

3𝜎], according to the ’Three Sigma Principe’. This principle tells us

almost all samples must fall into above ranges excluding very few

extreme values. Then we can approximate error 𝜀0 with restoring

𝜇𝑠
0
to 𝜇0,

𝜀0 ∼
2(1 − 𝑝𝑖 )𝑑𝑖𝜇0(𝜇𝑤 ± 3𝜎𝑤𝑠 )

1 + 𝑑𝑖
(22)

Since two variables of 𝑝𝑖 satisfying 0 < 𝑝𝑖 < 1 and 𝜎𝑤𝑠 ≫ 𝜎𝑤𝑐
are constants that cannot be ignorable, the errors for non-invariance

learning will be positively proportional to both 𝜇0𝜇𝑤 and 𝜎𝑤𝑠 while

negatively correlated with 𝑝𝑖 . That’s to say, the less causal parts

within observations, i.e., smaller 𝑝𝑖 , and the larger variations of

relations across environments, i.e., larger 𝜎𝑤𝑠 , the performance

deterioration will be more serious. Moreover, when 𝑓 is transferred

to OOD testing set 𝑁 (𝜇𝑞, 𝜎𝑞 |𝑒𝑞) satisfying 𝜇𝑞 = 𝑞𝜇0 where 𝑞 ∈ N+
.

The approximated error of OOD testing risks is amplified to,

𝜀𝑞 ∼
2(1 − 𝑝𝑖 )𝑑𝑖𝑞𝜇0(𝜇𝑤 ± 3𝜎𝑤𝑠 )

1 + 𝑑𝑖
(23)

To this end, such result manifests an unacceptable amplification of

error bounds from in-distribution to out-of-distribution samples.

Thus, we can arrive the conclusion that non-invariant relation

learning is inclined to fail on OOD regressions.

As a result, such representative example can be further general-

ized to all regression tasks based on aggregations. □

A.2 Proof of Proposition 2

Prop 2. Potential to eliminate the error amplification by only

capturing invariant relations.

If we only capture the neighbors that are causally correlated, the

errors 𝜀𝑐 can be derived by following equation,

𝜀𝑐 =

𝜇𝑡
0

+ 𝑝𝑖𝑑𝑖𝜇
𝑐
0
𝑤𝑐
𝑖
− (1 + 𝑑𝑖 )𝜇

𝑡+1

0

1 + 𝑑𝑖

=

(𝑝𝑖𝑤
𝑐
𝑖
− 1)𝑑𝑖𝜇

𝑐
0

1 + 𝑑𝑖

(24)

Since 𝑤𝑐
𝑖
are learnable parameters, there must exist an optimal

point𝑤𝑐
𝑖

=
1

𝑝𝑖
satisfying 𝜀𝑐∼0 ≪ 𝜀0. Thus, solution with invariant

relation preserved can enable the error converge to 0 by appropriate

optimization.

Finally, we can conclude the proof of this proposition and verify

the correctness of our motivation, i.e., capturing invariant relation

invariance for OOD regression. □

B DETAILS ON EXPERIMENTS

In this section, we will present some more details on experiments,

regarding experimental configurations, dataset statistics, as well as

parameter influences on performance.

B.1 Experimental configurations

To facilitate the reproducibility, we list the detailed configuration

of our CauSTG in Table 4 for reference.
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Table 4: Configuration of CauSTG. The configurations are

displayed in the order of SIP, Metr-LA, KnowAir and Elec-

tricity if different values are specified by datasets.

Parameter Concrete values

Backbone of CauSTG GraphWaveNet (GWN)

Sample split Train/Validation/Test: 2/1/1

Sub-environment partition 𝐾 6

Model number of sub-environment𝑚 4

Balance coefficient (𝜆0, 𝜆1, 𝜆2) (0.5, 0.5, 0.2)

Learning rate 1e-3

Invariance filtering threshold 𝑟% (60%,55%,55%,50%)

Number of TCN kernels 𝑙 (5,5,6,6)

TCN kernel dimension (12,6,3)

Proportion of masked nodes 5%

Hidden dimension of GNN 𝑑𝑚 64

Optimizer Adam

Table 5: Dataset statistics

Dataset

Node

#

Time

step #

Time

span

Interval

length

Mean/Std var in

periodicity

SIP 108 25,920

01/01/2017-

03/31/2012

5min 72.17/55.45

Metr-LA 207 34,272

03/01/2012-

06/30/2012

5min 27.45/30.25

KnowAir 184 11,688

01/01/2015-

12/31/2018

3h 52.69/61.60

Electricity 321 26,304

01/01/2012-

12/31/2014

15min 2538.79/820.92

B.2 Statistics of datasets

We figure out the statistics of four cross-domain datasets in Table 5,

to illustrate their properties. Noted that the mean within periodicity

represents the statistical average of each dataset while the stan-

dard variance within periodicity describes the averaged standard

variances of interval-level observations within each periodicity on

corresponding datasets. The statistics exactly reveal the strong

variation within each periodicity that verifies the segment-

level heterogeneity, and environment partition can exactly

contribute to (imitate) the distribution shifts.

B.3 Results on CauSTG+X

To support the generalization of our CauSTG, we combine our pro-

posed the hierarchical invariance, i.e., the strategies of hierarchical

training and stable weight selection, with two best ST learning

baselines, GWN, and MTGNN. The experiments are conducted

on temporal covariate shift scenario. By comparison, we can see

that the invariance explorer can indeed improve the performances

on OOD scenarios, verifying the model-agnostic property of our

solution. In addition, our integrated CauSTG still outperforms oth-

ers due to the improved design of our scalable relation-enhanced

learning.

Table 6: Ablation study

Variants SIP Metr-LA KnowAir Electricity

MTGNN 20.09% 10.05% 24.06% 2.12%

CauSTG-MTGNN 19.96% 9.98% 23.85% 2.10%

GWN 20.13% 10.01% 24.13% 2.08%

CauSTG-GWN 20.01% 9.96% 24.02% 1.98%

CauSTG 19.91% 9.75% 23.63% 1.89%

B.4 Hyperparameter analysis on performance

Result analysis and further insights. In this subsection, we

further demonstrate the hyperparameter analysis on other two

datasets, Metr-LA and Electricity, to support the completeness of

our experiments. The detailed results are shown in Fig. 6. As ob-

served, different parameters have various impacts on final predic-

tions and we can exploit these results to review and consolidate

the designs of our model and promote its adaptation to different

datasets. For instance, larger-scale datasets, such as Metr-LA and

Electricity, may require more learnable parameters to fit therefore

the element-wise variations of weights become larger. To this end,

a smaller 𝑟 should be imposed to filter the stable relations for avoid-

ing the sparse common invariance. In addition, we set𝑚 = 4 as the

number of sub-models within each sub-environment. In an intuitive

observation, the increasing number of models can first increase

the performance and then decrease as more models will lead to

more diversity thus challenging for capturing invariance. We can

also modify the fine-tune epochs for each dataset to realize the

optimized results which will be left as our future work. In summary,

these results of more detailed analysis can provide insights into our

further research on the wider universality of our CauSTG.

Figure 6: Hyperparameter analysis onMetrLA and Electricity
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Table 7: Efficiency study

Dataset Metr-LA KnowAir

Stage train inference train inference

MTGNN 0.41M 0.41M 0.38M 0.38M

GWN 0.28M 0.28M 0.28M 0.28M

DCRNN 0.37M 0.37M 0.37M 0.37M

ASTGNN 0.57M 0.57M 0.55M 0.55M

CauSTG 1.83M 0.43M 1.77M 0.41M

B.5 Efficiency study across different models

We evaluate the efficiency of our proposed CauSTG from three

perspectives, time complexity, space complexity and the empirical

parameter numbers.

Time complexity. Assuming 𝐾 sub-environment and𝑚 mod-

els in each sub-environment, the total training workloads can be

derived by the 𝐾 ×𝑚 times of traditional ST learning. Actually, our

ST learning enables the model to automatically learn node-wise

relations and temporally seasonal-trend pattern, the parameters

becomes two-fold. Parameters of spatial learning is linearly with

node number 𝑁 while parameters of temporal pattern extraction

are the summation of sizes of convolution kernels and trend trans-

formation weights, which is also limited to linearity of node number.

Therefore, the time complexity of training process is approximately

𝑂(𝑁 ∗ 𝐾 ∗𝑚). And for inference stage, our model combines the

environment-specific local invariance weight W∗
𝑘
with global in-

variance W∗ without additional computations. Thus, our model

is efficient for one-training and permanent OOD inference. In ad-

dition, our solution does not require additional training time as

the training set are sampled separated and our models including

different sub-models can be trained parallelly on GPUs.

Space complexity. Although we train multiple (i.e., K) sub-

models for each task, we subsequently integrate them into one

model via a stability-based ensemble strategy. Such strategy is per-

formed by filtering non-stable relation placeholders and therefore,

our solution is actually more parameter-efficient with no increases

of parameter numbers in inference stage. In the training stage, the

introduced additional cost is much more deserved than making

efforts on re-designs and modifications of models when new OOD

data arriving.

Empirical parameter numbers.Wederive the number of learn-

able parameters for several selected baselines as well as our CauSTG.

As the parameter numbers are diverse across different training sets,

we take the datasets Metr-LA and KnowAir as an example and show

parameter numbers of models respectively at the training stage

and inference stage in Table 7. The results illustrate that in infer-

ence stages, our CauSTG is with similar and comparable parameter

numbers when compared with other baselines. Also, our CauSTG is

with a medium scale among all these baselines and even has fewer

parameters at inference stage than training due to the stable weight

selection (filtering) process.

C TECHNICAL DETAILS OF CAUSTG

In this section, we provide some more technical details of our

CauSTG to supplement the main texts. First, we provide the pseudo

code of our CauSTG in Algorithm 1.

Algorithm 1 Causally spatiotemporal graph learning (CauSTG)

Input: Dataset G𝑠 , ST observations 𝑿 , number of samples𝑚

Output: Well-learned invariant relations W̃∗
𝑘
and predictor 𝑓 ∗(·)

1: Initialization: ST consistency learner 𝑓 (·) and its parameter setW.

2: Get environment partition {𝑒1, 𝑒2, ..., 𝑒𝐾 } ← Eq. 2 and Eq. 3 for 𝑿
3: {{G𝑡 }𝐵

𝑡=1
}𝐾
𝑘=1
← Re-organize 𝐵 samples for each sub-environment

4: Divide 𝐵 samples into different𝑚 sub-set for sub-environment

5: for 𝑛 = 0 to 𝐾 do

6: for 𝑡 = 0 to𝑚 do

7: Learn the weightWij based on ST consistency learner 𝑓 (·)
8: Total loss: L = MAPE(𝒀 ,𝒀 ) + 𝜆0𝐿𝑜𝑠𝑠se + 𝜆1𝐿𝑜𝑠𝑠 tr + 𝜆2Regin
9: end for

10: Get local invarianceW∗
𝑘
← Eq. 15 onWkj

11: end for

12: Get global invariance W∗ by filtering W∗
𝑘

13: Get the fused invariance W̃∗
𝑘
and 𝑓 ∗(·)← Eq. 16 onW∗ and W∗

𝑘

14: Fine tune and update W̃∗
𝑘
← Shuffled ({G𝑡 }𝐵

𝑡=1
)

15: return W̃∗
𝑘
, 𝑓 ∗(·)

Also, we present the detailed architecture of decomposed tempo-

ral pattern extractor in Fig. 7, which consists of a seasonal branch

for multi-scale seasonality pattern extraction and a trend learning

branch with multi-view trend constraints. Such disentangled learn-

ing is inspired by that the independence of learned representation

can benefit causal learning and capture diverse independent rela-

tions. The learnable weights of seasonal learning𝒘ts and trend ex-

traction𝒘tr encapsulate the relations between inputs and predicted

observations including underlying periodicity-based amplitude and

evolution trend transformation.

Multi-scale conv

Seasonal branch

Trend branch

Multi-view weight 

𝑋𝑠∗𝑤𝑡𝑟

𝐶𝑜𝑛𝑣∗(𝑋
𝑠; 𝑤𝑡𝑠

1 , … , 𝑤𝑡𝑠
𝑙 )

𝐜𝐨𝐬 𝒚, ෝ𝒚 +

𝒄𝒐𝒔 ∆𝒚, ∆ෝ𝒚

∆𝒚 = 𝒚𝒕+𝟏 − 𝒚𝒕

𝒚

Figure 7: Detailed architecture of decomposed temporal pat-

tern extractor

D FURTHER DISCUSSIONS OF CAUSTG

Model summary. Our CauSTG is a novel deep learning frame-

work that introduces causal theory, i.e., invariant learning across

environments, into spatiotemporal forecasting. The core idea is

hierarchically re-organizing training samples guided by temporal

environment partitions and maximally exploit available data to

capture invariant relations from environment-specific model pa-

rameters. In addition, with the stability-based filtering, our CauSTG

can be seen as interpreting uncertainty-based weight filtering to

realize the invariant learning on OOD regression.

Besides, our CauSTG, with serveral emerging techniques, has

a nice scalability on various series-based learning and regression

tasks, which promotes the OOD studies from classification towards
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regression and spatiotemporal learning. On OOD time-series learn-

ing, we can adopt our adaptive temporal partition strategy to pro-

gressively identify the distinguished sequence segment to construct

diverse temporal environments. Then the consistent local patterns

within sequence segments and global patterns across sequence

segments can be well captured for OOD sample prediction. For

regression tasks, it usually aims to achieve a series of learnable

weights to fuse feature-level observations for obtaining targets.

At this time, we can borrow the idea of environment partition

in CauSTG and enable learnable weights to reflect the relations

between features and targets. Then the relatively stable relations

(i.e., weights) across different virtual environments can be further

extracted for OOD inference.

Relation to existing causal inference literature. In this work,

we accommodate spatiotemporal learning into a new invariant

learning framework in causal perspective, even there is no explicit

Structural Causal Model that is commonly appear in causality-based

literature. Actually, we aim to learn the invariant spatiotemporal

relations and disentangled seasonal-trend patterns across environ-

ments thus eliminating the non-stable relations or patterns that

account for the shortcut features in structural causal model. Also,

alternately training samples across different sub-environments can

be viewed as the do-calculus on spatiotemporal variables and this

mechanism can be the backdoor adjustment in causal theory, where

the environments can be considered as a vertical variable to main

observations. Thus, our hierarchical invariance explorer can elimi-

nate the backdoors through the invariance filtering. Therefore, our

model can be well adapted in the causal theory with satisfactory

interpretations.

Relation to uncertainty theory. In the theory of uncertainty

quantification, the epistemic uncertainty models learnable model

weights as a distribution and captures such uncertainty by esti-

mating the distribution parameters, such as the expectation and

variance. In our solution, the weight variance within or across

environments, indicating the stability of learnable relations, can

naturally be viewed as the epistemic uncertainty of correspond-

ing weights. Therefore, our model can also be seen as filtering the

weights with less epistemic uncertainty during training process

from uncertainty perspective.

Limitations and future works. In our work, we hierarchically

partition samples into different environments and sample groups

for invariance extraction, and exploit the rolling back strategy to

fine-tune the neural networks after stability-based pruning. There-

fore, there still remain two limitations, 1) how to systematize the

hierarchical division process with the dataset property and 2) how

to explore a better strategy to iteratively fine-tune the new pruned

network structure? The potential solution to the first question is

to conduct extensive experiments to empirically observe the per-

formance variations and another solution becomes deriving the

optimized partition from a well-designed spatial-temporal consis-

tency metric. For the second one, the learning strategy can be

further promoted by uncertainty quantification, parameter sensi-

tivity analysis and theory of lottery tickets. The rolling-back and

fine-tuning process can work alternately and iteratively. Both of

them will be left as our future works. For generality, we will also

explore how to adapt the learning strategies on different OOD sce-

narios such as new node involvement and covariate shifts, with

slight modification.

Fairness and ethic issues. Our work performs extensive analy-

sis and experiments on datasets including traffics, climate datasets

concerning air quality, and consumptions of electricity, without any

personal identity and privacy issues. Therefore, our work is with

no ethics and privacy issues. In addition, all baselines and methods

are compared with fairness.
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